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Abstract

This paper explores strategic communication in settings where committee members are

held accountable, formally or informally, for their individual voting decisions. In a con-

trolled laboratory experiment, we show that if decisions are made via majority, expressive

payoffs introduce a free-rider problem that causes agents to communicate strategically,

which prevents the committee from taking optimal decisions. In contrast, if decisions are

made by unanimity, free-riding is mitigated since all agents are responsible for the com-

mittee’s decision: under unanimity subjects are more truthful, respond more to others’

messages, and are ultimately more likely to take the optimal decision.
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1 Introduction

Committees are a ubiquitous institution for making institutional decisions in the presence of

uncertainty. Ideally, committees aggregate the private information of their members and thus

make more informed decisions than could be made by any one individual in isolation. This

intuition was first formalized by de Condorcet (1785), who showed that if all individuals hold

private information that is more likely to be “right” than “wrong,” and if all individuals vote

according to their private information, then a sufficiently large committee that votes via a ma-

jority rule will choose the “right” option with arbitrary precision. However, in many real-world

settings, committee members may face consequences not only for the outcome of the collective

decision, but also for how they personally voted. For example, board members may benefit

from supporting successful ventures, politicians may wish to signal their ideological position

to the electorate, and FDA experts may seek to avoid blame for approving a drug that proves to

have severe side-effects.1

In cases where committee members have mixed motives, the assumption that individuals will

vote sincerely may fail since, relative to decisions made by a single agent, decision-making

by majority dilutes individual responsibility for the committee’s decision, making committee

members more likely to vote according to their expressive biases (see for example Brennan and

Buchanan, 1984, Callander, 2008 and Morgan and Várdy, 2012). However, an important factor

to consider when assessing the impact of mixed motives on committee behavior is that voting

in small and medium-sized committees is often preceded by open discussion. Deliberation has

been shown to significantly improve a committee’s ability to aggregate information (see Cough-

lan, 2000, Guarnaschelli et al., 2000), but the impact of mixed motives on the effectiveness of

pre-vote deliberation is an understudied topic.2

1For example, David Willman of the LA Times later won a Pulitzer Prize in part for his article analyzing the FDA

committee’s decision to approve Posicor, was withdrawn after being linked with over 100 deaths, by a 5-3 vote

(Willman, 2000). His article explicitly names two of the committee members who voted against the drug, and

cites a third committee member who could not participate in the vote due to financial conflict as stating “You do

wonder how the world would perceive it. I’m glad I didn’t vote. . . ”
2Pre-vote communication has been widely studied in the case where committee members have conflicting prefer-
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In this paper, we explore the effect of expressive payoffs—we use the term expressive payoff

to refer to payoffs that depend on the individual’s vote—on communication and information

aggregation in committees. Additionally, we explore how the effect of expressive payoffs on

communication may be sensitive to the decision rule used by the committee. In particular,

we highlight and test the novel prediction that when committees are subject to mixed motives

and have access to communication, a majority rule results in strategic communication while a

unanimity rule will lead to truthful communication and information aggregation.

We begin by illustrating that under majority rule, expressive payoffs give agents an incentive

to convince other’s to support a given option, while individually voting for the opposite option.

To outline the intuition, take the case of the European Stability Mechanism (ESM), which is

composed of the finance ministers of Eurozone countries and takes decisions regarding the

management and disbursement of bail-out funds to individual Eurozone countries via a vote.

While the finance ministers may want to approve bailouts that are necessary to secure financial

stability, bailouts of other EU countries are not always popular with the politicians’ domestic

audiences and their vote may therefore impact their chances of reelection. Accordingly, suppose

that the finance ministers face a reelection cost for voting to approve a bailout independent of

whether a bailout is necessary to secure the financial stability of the Eurozone, and that the

decision to approve a bailout is taken by majority rule.3

Additionally, assume each minister receives an independent signal that is informative of whether

or not a bailout is necessary, and that the ministers privately deliberate prior to voting (EU fi-

nance ministers deliberate behind closed doors before publicly voting whether to approve a

bailout). In this case, even assuming that all ministers truthfully reveal their private informa-

tion during deliberation, it will not be part of an equilibrium strategy for all ministers to vote to

approve the bailout when deliberation indicates (i.e. the shared signals indicate) that this is the

optimal decision—if all other ministers members vote to approve, a single minister can vote to

ences over the committee decision (see for example Li, 2001, Austen-Smith and Feddersen, 2006 and Goeree and
Yariv, 2011). In contrast, to the best of our knowledge, communication and mixed motives has not been addressed.

3Decisions in the ESM are currently taken using a unanimity rule, recent proposals to replace the ESM with a
European Monetary Fund (EMF) have discussed using a majority rule (see European Commission, 2017; Sapir
and Schoenmaker, 2017).
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reject the bailout without changing the committee outcome, and hence will avoid the reelection

cost. Therefore, given truthful communication it will be a joint best reply for the ministers

to mix over voting to approve and reject, which introduces a probability that the ESM votes

against a bailout even when the evidence indicates that a bailout is necessary to secure financial

stability.

In turn, this collective-action problem at the voting stage affects the value of communication.

That is, consider the position of a minister who has access to an insight that suggests that a

bailout may be unnecessary. This minister knows that, relative to the appropriate threshold of

doubt, the committee will be less likely to approve a bailout due to the bias introduced in the

voting stage. Should the minister reveal their insight to the other ministers during deliberation?

Anticipating the bias towards not approving the bailout, the minister actually has an incentive to

withhold their insight, and thereby move the expected decision closer to optimal threshold for

approval. Due to this incentive to strategically withhold or misrepresent information, truthful

communication will fail to be part of an equilibrium strategy under majority rule.

We test this prediction experimentally and find that under majority subjects systematically mis-

report their messages in a pre-vote round of binary cheap talk in a direction consistent with

intuition outlined above. Additionally, we classify agents into distinct strategy types using a

finite mixture modeling approach and find that under majority rule 20–26 percent of subjects

pursue a “free-rider” strategy that is biased towards falsely reporting the non-expressive option

and personally voting for the expressive option.

Next, we consider behavior under the same expressive payoffs when the committee uses a

unanimity rule to reach a decision. Continuing with the example above, requiring unanimity

implies that all ministers must vote approve for a bailout to be approved. This removes the

collective action problem in the voting stage— all ministers must forgo the expressive payoffs

for a bailout to be approved. Therefore it is an equilibrium strategy for all ministers to vote

to approve the bailout when deliberation indicates that this is the optimal decision. In turn,

since that the committee votes optimally given the information, ministers no longer have an
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incentive to communicate strategically under unanimity. That is, in contrast with majority,

under a unanimity rule, an equilibrium exists with truthful communication and committee-

optimal decisions.

Experimentally, we find that with expressive payoffs subjects are indeed more truthful under

unanimity relative to majority, and as predicted, unanimity also outperforms majority in terms

of information aggregation. To the best of our knowledge, this finding constitutes the first

experimental evidence of a setting where a unanimity rule is strictly preferable to majority

(previous experiments in settings with pre-vote deliberation, such as Guarnaschelli et al., 2000,

and Goeree and Yariv, 2011, find either no significant difference between unanimity and major-

ity, or less information aggregation under unanimity). Additionally, we find that no subjects are

classified as pursuing a “free-rider” strategy when the committee takes decisions via unanimity,

suggesting that unanimity avoids the collective action problem that occurs under majority rule

when the committee is subject to mixed motives.

As mentioned above, our paper’s main contribution is to the literature that has explored the im-

pact of mixed motives on committee behavior (Callander, 2008 and Morgan and Várdy, 2012))

and the literature that has focused on the efficacy of communication when agents have conflict-

ing preferences over the committee decision (see Li, 2001, and Austen-Smith and Feddersen,

2006, Goeree and Yariv, 2011). In this case, agents have an incentive to deviate from truthful

communication in an attempt to bias the committee decision towards their preferred option—

that is, opposite from our prediction, agents have an incentive to misreport for the same option

that they individually vote for. Importantly, heterogeneous preferences over the committee out-

come also lead to distorted committee decisions under both majority and unanimity (Goeree

and Yariv, 2011).4

In contrast, the mechanism we highlight here does not rely on heterogeneous preferences over

the committee decision—all agents receive the same instrumental benefits if the committee

makes the correct decision. However, due to expressive payoffs, agents have strategic incentive

4Interestingly, Goeree and Yariv (2011) do not find that subjects communicate strategically in this setting, while we
find strong evidence for strategic communication.
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to misreport to persuade others to vote for the option that is collectively optimal, but individu-

ally costly. Moreover, this collective-action problem only occurs under majority, since majority

admits the possibility that the committee selects the collectively optimal option even when a

minority “free-rides” and votes for the individually optimal decision. In contrast, Unanim-

ity rule holds all members equally responsible for the committee decision, which facilitates

committee-optimal behavior.

Our paper is also related to the literature on reputation payoffs in committees, which considers

the Holmstrom (1999) model of career concerns applied to a committee setting. Here, agents

do not receive payoffs related to the committee decision—reputation payoffs depend on the

agent’s vote relative to the aggregate voting profile, as agents seek to maximize the principal’s

ex-post belief that the agent is of high ability. This literature primarily considers the question

of the optimal level of transparency (see Fehrler and Hughes, 2018, for a review).5 Visser and

Swank (2007), however, consider the different decision rules in a setting with communication

and reputation payoffs (additionally, Levy, 2007, compares majority and unanimity in a setting

without communication). They find that, similar to the setting analyzed in the literature on

conflicting preferences, an agent’s incentive to misreport their private information stems from

heterogeneity in preferences over the committee decision.

Our paper proceeds as follows: Section 2 introduces the theoretical model and presents our

formal results. Section 3 describes our experiment testing the predictions of the model and

Section 4 presents the analysis of the experimental results. Section 5 concludes. The formal

proofs, the experimental instructions and a number of robustness checks are provided in the

Appendix.

5Fehrler and Hughes (2018) also provide a theoretical and experimental analysis of communication and reputation
payoffs; in their setting, committee members misreport the precision of their signal when they have a low-precision
signal and communication is observed by the principal.

5



2 The Model

We begin by considering a Condorcet setting with pre-vote communication (cheap talk), binary

signals and a simple expressive payoff for voting for one of the two options. This setup allows

us to clearly illustrate the main properties of voting in the presence of expressive payoffs—

in Section A in the Online Appendix we extend the model to show that these predictions are

robust to a generalized signaling space and expressive payoffs that also depend on the state

of the world and the committee decision. Our aim here is not to be exhaustive—games with

communication generally admit a multitude of equilibria—rather we focus on characterizing

the conditions under which the model supports equilibria with truthful communication and

optimal committee decisions.

2.1 Basic Framework

An odd-numbered committee of N agents, i ∈ {1,2, ...,N} with N ≥ 3, chooses between two

options {R(ed),B(lue)}. The committee decision, denoted by X ∈ {R,B}, is made via a vote,

where each committee member submits a vote, vi ∈ {R,B}, simultaneously with no abstentions.

The underlying state of the world is denoted by ω ∈ Ω = {R,B}. Agents do not observe the

state of the world, and all agents have a common prior over the state of the world, denoted

PR = Pr(ω = R), that specifies that each state is equally likely (PR = 1/2). Additionally, each

committee member receives a private signal from a binary signal space S, si ∈ {R,B}, with

Pr(si = x|ω = x) equal to α ∈ (1/2,1) for any x ∈ {R,B}. For the common-value component

of payoffs, each agent receives a payoff of 1 if the committee chooses the option that matches

the underlying state of the world, and a payoff of 0 otherwise; for the expressive component

of payoffs, each agent has a simple expressive voting bias and receives a payoff of K ∈ (0,1)

conditional on voting for option R. That is:

u1(X ,ω)+u2(X ,ω,vi) = IX=ω +K ∗ Ivi=R,
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where Ivi=R takes a value of 1 if vi = R and 0 otherwise. This simple voting bias is indepen-

dent of the state of the world and the decision of the committee—however, we generalize our

findings to more complex vote-contingent expressive payoffs in section A of the Appendix.

Given the symmetric structure of the model, a positive payoff of K for voting for R is equivalent

to a negative payoff of −K for voting for B. Therefore, the model captures both positive and

negative expressive payoffs. Also, since the signal space is binary, the profile of signals and

messages can be characterized by the number of signals and messages, respectively, of B. We

denote the aggregate number of signals of B by S# (S# = ∑i Isi=B), and the aggregate number of

messages of B by M# (M# = ∑i Imi=B).

In our baseline model, we consider a committee that uses a majority rule; we introduce una-

nimity rule in the following subsection. Take dv to be the decision rule used by the committee.

We use the standard definition of a majority decision rule:

Definition 1 (Majority). Each player submits a vote vi ∈ {R,B}. The final decision X is the

option that receives a larger number of votes.

The timing of the game is as follows:

1. Nature draws state ω ∈ {R,B} and sends private signals (si).

2. Committee members observe si and simultaneously send messages mi ∈ S.

3. Committee members observe M# and simultaneously submit votes ∈ {R,B}.

4. The committee decision is taken, the state is revealed and payoffs accrue.

The equilibrium concept we consider is symmetric Perfect Bayesian Nash (a formal definition is

provided in the Appendix). By symmetry, we require that agents with the same signal who also

sent the same message vote R with the same probability. Our theoretical results establish (non-)

existence and properties of equilibria sustaining truthful communication. That is, all messages

are sent with positive probably and all information sets relevant for defining the (stationary)

strategies of our agents are on the path of play. Beliefs are therefore uniquely specified by

Bayes’ Rule and need not be specified explicitly. Given the beliefs consistent with Bayes’
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Rule, expected utilities are also well-defined, and equilibria are defined straightforwardly.

We denote the game by Γ̂ = 〈PR,N,u,dv〉. Agents’ strategies are pairs (σi,τi), where:

• σi(mi|si) is the probability of sending message mi ∈ S after receiving signal si,

• τi(si,mi,M#) is the probability of vote R after signal si, own message mi, and the aggre-

gate message profile.6

Definition 2 (Optimal Information Aggregation). We define (Committee-) Optimal Information

Aggregation as replicating the decision taken by a single decision-maker (DM) with preferences

u(X ,ω,vDM) = u(X ,ω,vi), who has access to the complete profile of signals, and whose vote

determines the committee decision, X = vDM.

We refer to the decision that optimally aggregates information as the committee-optimal deci-

sion. We also distinguish between optimal information aggregation and information aggrega-

tion: information aggregation implies that the committee selects the option that is most likely

to coincide with the state of the world given the set of private signals; (committee-) optimal in-

formation aggregation, however, takes into account the expressive payoffs, which implies that,

say, option R may be optimal even when ω = B is more likely. We acknowledge that in cases

where a committee takes a decision on behalf of society, and the payoffs from matching the

decision to the state of the world are symmetric, social welfare may be maximized by infor-

mation aggregation since the committee members’ expressive payoffs may be small relative to

the social impact of choosing the more likely option. Therefore, while we focus on optimal

information aggregation in the theoretical analysis, we will consider both benchmarks when

interpreting our experimental results.

6Since we consider stationary strategies and focus on the existence of an equilibrium with truthful communication

under Unanimity, we omit a t subscript on τi without loss of generality.
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2.2 Analysis

We begin by characterizing a well-known set of equilibria, existent in most games of informa-

tion aggregation through voting, that do feature truthful communication in the communication

stage: regardless of messages, all agents voting R is a mutual best response under Majority.

Clearly, any message strategy can be sustained in these “non-responsive equilibria,” including

truthful communication.

Proposition 1 (Non-Responsive Equilibrium). In any game Γ̂ with dv = Majority, there is

a symmetric equilibrium where all agents truthfully communicate (σ(si|si) = 1) and vote for

option R for any signal, message and profile of messages (τ(si,mi,M#) = 1).

The rationale for Proposition 1 is that when τ(si,mi,M#) = 1 for all i 6= j, then j’s vote cannot

be pivotal, which implies that v j = R is a best response. Given K > 0 there is no non-responsive

equilibrium with τ(si,mi,M#) = 0 under Majority, since if i’s vote is not pivotal, then i has a best

response of voting for R and receiving the expressive payoff. In the remainder of this section,

we analyze equilibria with Responsive Voting, which we define as equilibria where τ(si,mi,M#)

is not constant.

Responsive voting under Majority Next, we consider the existence of equilibria with truth-

ful communication and responsive voting under Majority. In the analysis, three qualitatively

similar but technically distinct cases need to be considered. We consider all cases in detail in

the appendix, but for ease of exposition here, we focus on voting behavior that constitutes a mu-

tual best response given truthful communication under the restrictions that (i) voting behavior

conditions only on M# and (ii) among the set of mutual best responses it maximizes the prob-

ability that the committee chooses the option with the majority of private signals. We denote

such voting strategies as τM. In the other cases, agents may condition their voting behavior on

their individual message, they might simply vote all R for some M#, or they might vote B with

low probability, which yields results that are qualitatively similar for all classes of equilibria.

Given our focus here, we simplify the notation of τ(si,mi,M#) to τM(M#) for the remainder of
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this subsection.

The following lemma characterizes voting strategies in potential equilibria sustaining truthful

communication and responsive voting satisfying this restriction.

Lemma 1 (Voting Stage: Majority). In any game Γ̂ with dv = Majority, for any symmetric

equilibrium that exhibits truthful communication, σ(si|si) = 1, and responsive voting strategies

τM = τ∗(M#), there exists S′ ≥ (N +1)/2 such that

• τ∗(M#) = 1 if M# < S′,

• τ∗(M#) ∈ (0,1) if M# ≥ S′.

We characterize S′ and τ∗(M#) in the proof of Lemma 1 in the Appendix. Intuitively, a neces-

sary condition for agents to vote for B with positive probability is that M# is high enough such

that the expected common-value payoff of selecting B is larger than the expressive payoff, K.

However, this is not a sufficient condition; τ∗(M#)< 1 can only be a symmetric best response if

the expected common-value payoff of selecting B times the probability of being pivotal, given

that other agents play τ∗(M#), is equal to the expressive payoff. Thus, S′ is the minimum value

of M# such that this condition is satisfied for some τM(M#) ∈ (0,1).

More generally, Lemma 1 states that when R is committee optimal, all committee members vote

for R with probability one in any truthful, responsive equilibrium. However, there is no truthful,

responsive equilibrium in which all agents vote for B when B is committee optimal. Due to the

free-rider problem highlighted in Theorem 1—each committee member would prefer that a

majority vote for B, but to individually belong to the minority of agents that vote for R—all

potential responsive symmetric equilibria involve mixing in the voting stage. This mixing over

vi introduces an aggregate bias toward option R, since there is a positive probability that the

committee will select R even when B is committee optimal.

Lemma 1 characterizes the potential form of responsive equilibria with truthful communication

under Majority. However, the result does not imply that such an equilibrium always exists.

Based on Lemma 1, we next show that the existence of an equilibrium with truthful commu-
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nication and responsive voting can be ruled out if the expressive payoff K is above a certain

threshold.

Proposition 2 (Truthful Messaging under Majority). In any game Γ̂ with dv = Majority, there

exists K′ > 0 such that equilibria exhibiting truthful communication and responsive voting do

not exist if K > K′.

We explicitly characterize K′ in the proof of Proposition 2 in the Appendix, but essentially, at

K′ it is no longer optimal to vote B if there are just (N + 1)/2 signals for B. As a result, K′ is

fairly low even in small committees, as will become clear with our experimental design.

Proposition 2 shows that the free-rider problem in the voting stage has a knock-on effect on

the messaging stage, eliminating equilibria with truthful communication and responsive voting

for sufficiently high values of K. The intuition for this result is as follows: Independent of

their own vote, each agent would prefer that the committee select option B when there are

more signals for B (information aggregation). However, as detailed in Lemma 1, given truthful

communication the expressive payoff biases the committee’s decision toward R, since agents

play mixed strategies at the voting game for M# ≥ S′. Deviating from truthful communication

and messaging B following a signal for R allows agents to reduce this bias since the probability

that each agent votes for B is increasing in M#.

Because of this, agents face a tradeoff when considering a deviation to messaging B following

a signal for R: on one hand, this decreases the committee’s voting bias towards R; on the

other hand, it may imply that the committee selects B when R has a higher number of signals.

This tradeoff implies that truthful messaging and responsive voting can be an equilibrium for

low levels of K, despite the committee’s voting bias towards R. For large enough K, however,

deviating to messaging B (and voting R) following a signal for R is individually optimal, thereby

eliminating equilibria with truthful communication and responsive voting. We shall refer to this

strategy, falsely reporting B while personally voting R, as the “free-riding” strategy.
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2.2.1 Information aggregation under Unanimity

In this subsection, we consider committee-decisions under a unanimity rule. That is, we con-

sider a decision rule that requires unanimous agreement: the committee reaches a decision only

when all members of the committee vote for the same option. This form of unanimity rule

is consistent with the legal definition of unanimity where, e.g., for a decision to be reached

either all jury members must vote “guilty” or all members must vote “not guilty.”7 Accord-

ingly, we model unanimity as a repeated series of informal straw polls, where a final decision

is reached only when the straw poll is unanimous. This contrasts with a status-quo unanimity

rule, common in international organizations, where one option is designated as a status-quo

and unanimous agreement is required for any change from the status quo.8 However, in the Ap-

pendix we show that a status-quo unanimity rule is partially robust to expressive payoffs, while

a unanimity rule that requires unanimous agreement for any decision eliminates the free-rider

problem for any expressive payoff.

We model the process by which the committee coordinates on a unanimous decision as a se-

quence of (internal) straw polls. Each straw poll results in a committee decision, X ∈ {R,B,D},

where decision “D” denotes “disagreement” in case unanimity is not achieved.:

Definition 3 (Unanimity). The straw poll proceeds in rounds, and each round each player

submits a vote vt
i ∈ {R,B}, t ∈ {0,1, . . .}. If the straw poll is unanimous then voting stops,

each agent’s final vote vi is equal to their vote in the straw poll, and the committee decision is

equal to the unanimous decision. Otherwise, a new round of the straw poll begins. In case of

perpetual disagreement, X = D.

7See American Bar Association (2013) for detailed description of jury deliberations. In federal jury trials in the US,

if a unanimous decision cannot be reached after extensive jury deliberation, a “hung jury” results and a mistrial

is declared. A mistrial, however, is not equivalent to an acquittal. As described by the American Bar Association

(2013), a hung jury implies that: “The case is not decided, and it may be tried again at a later date before a new

jury.”
8In the formal literature, unanimity has been most commonly modeled as a status-quo unanimity rule (see Feddersen

and Pesendorfer, 1998 and Maggi and Morelli, 2006). For a notable exception, see Coughlan (2000).

12



For simplicity, we focus on stationary strategies in the voting stage. While we do not include

a discount term, including discounting between intermediate rounds of voting does not qualita-

tively impact our results. As we show later, an equilibrium of the game exists in which agents

play stationary strategies and reach a decision in the first round of voting, so theoretically the

straw poll is not necessary for agents to exchange information. Also, in our baseline model

expressive payoffs are contingent on the final vote (vi) only; we consider the case of expres-

sive payoffs in the communication and coordination (straw-poll voting) stages in the Appendix.

Lastly, in case of perpetual disagreement, X = D, all payoffs are zero (u(D,ω,vi) = 0).

The procedure for the unanimity rule specified above is just one of many ways to model the

process by which the committee coordinate on a unanimous decision. We illustrate our results

using this particular procedure since it follows the general process often used in committees:

agents first publicly share their private signals, then “deliberate” using a sequence of straw polls,

and reach a final decision when the outcome of a straw poll is unanimous (see Guarnaschelli

et al., 2000; Goeree and Yariv, 2011). Note that the feature of unanimity rule that is most

important for our analysis is that for a given decision to be chosen, all agents must unanimously

vote for that decision.

Next, we clarify that the existence of an equilibrium with optimal information aggregation un-

der Unanimity obtains in any game Γ̂. We establish this result using the same line of reasoning

that we use to derive the non-existence result under Majority. That is, first consider the case

in which the committee truthfully communicates; the following lemma characterizes voting

behavior in equilibria the feature truthful communication.

Lemma 2 (Voting Stage: Unanimity). In any game Γ̂ with dv = Unanimity, for any symmetric

equilibrium that exhibits truthful communication, σ(si|si) = 1 and responsive voting strategies

τM = τ∗(M#):

• τ∗(M#) = 1 if M# < S̄,

• τ∗(M#) = 0 if M# ≥ S̄.

That is, under Unanimity, voting optimally aggregates information given truthful communica-
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tion. The reason for this difference between Unanimity and Majority is that under Unanimity,

the committee can only select option B if all committee members forgo the expressive payoff

of K. Due to this the uniform enforcement of responsibility, the free-rider problem that occurs

under Majority is mitigated, and optimality in the voting stage is restored.

Lemma 2 implies the following proposition:

Proposition 3 (Truthful Messaging under Unanimity). In any game Γ̂ with dv = Unanimity, an

equilibrium exists with truthful messaging (σ(si|si) = 1) and committee-optimal decisions.

Under Unanimity, all committee members must vote for an option for it to be selected. There-

fore, even with the incentive to free-ride in the voting stage, given truthful communication

it is a best-response for all agents to vote for the committee-optimal decision since no agent

can deviate to a different voting strategy without preventing the committee from selecting the

committee-optimal decision. Likewise, any deviation from truthful communication will either

result in the same decision, or move the committee decision away from the optimal decision.

Propositions 2 and 3 allow us to make a comparison between Majority and Unanimity rules:

relative to Unanimity, where an equilibrium exists with truthful communication and committee-

optimal information aggregation for any level of the expressive payoff, if the expressive payoff

is high all responsive equilibria under Majority lack both truthful communication and informa-

tion aggregation. Next, we use the observations of Propositions 2 and 3 to inform our experi-

mental design and test the qualitative predictions of the model.

3 Experiment

In this section, we explain how our experimental design may help us to detail the differences

in communication and voting under Majority and Unanimity, and to explore the mechanisms

behind the observed differences in aggregate behavior under the two decision rules.
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3.1 Experimental Design

The experiment closely implements our model of voting with expressive payoffs and binary sig-

nals, using a 2×2 treatment design with “High” and “Low” expressive payoffs under Majority

and Unanimity. The experimental implementation closely follows the related experiments of

Guarnaschelli et al. (2000) and Goeree and Yariv (2011). In particular, we use neutral lan-

guage, communicate probabilities and signals to subjects using balls drawn from urns, and

provide feedback about the actual state of world and composition of payoffs after each round.

A detailed description follows and a translation of the instructions and a screenshot are provided

as supplementary material. The experiments were conducted at the WZB/TU experimental lab-

oratory in Berlin in May, June and November of 2016. Subjects were recruited using ORSEE

(Greiner, 2015) and the experiment was programmed in Z-Tree (Fischbacher, 2007).

The four treatments are summarized in Table 1. The sum of the expressive payoff K, which

committee members get after voting R, and common-value payoff Pc, which committee mem-

bers get after a committee decision that agrees with the state of the world, is always equal to to

50 points. In the treatments with “low” expressive payoffs, we set K = 10 and Pc = 40, and in

the treatments with “high” expressive payoffs, we set K = 15 and Pc = 35. The payoffs were

calibrated such that K > K′ in both the Low and High treatments, and we discuss the theoret-

ical predictions in detail in the following subsection. In both cases, we conduct sessions with

both unanimity and majority voting. The precision of each subject’s signal was constant across

treatments and equal to α = 0.6. Subjects were paid according to the sum of points accumu-

lated across all 50 games, and one point corresponded to one Euro cent in all treatments.9 The

experiment lasted between 75 and 105 minutes and subjects earned between 19 and 22 Euros

9This approach is known as the “pay all” method. Charness et al. (2016) review the evidence for and against “pay

all” in contrast to the approach to “pay one” round and conclude that “in general, . . . both are useful methods”,

suggesting that practical considerations such as potential bankruptcy (as in auctions, which would favor “pay one”)

should be considered when designing experiments. The practical considerations that let us to choose to “pay all”

are the comparability with earlier experiments (such as Goeree and Yariv, 2011) and the potential introduction of

background risk by “pay one”, which would be a potential confound in our risky environment.
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on average across sessions.

Table 1: Overview of experimental treatments

Label Decision rule Pc K #Subjects #Sessions #Games

Majority-Low Majority 40 10 48 4 50
Majority-High Majority 35 15 45 4 50
Unanimity-Low Unanimity 40 10 45 4 50
Unanimity-High Unanimity 35 15 48 4 50

For each treatment, we ran four sessions with either 9 (two sessions) or 12 (fourteen sessions)

participants. In all cases, two sessions were run simultaneously to increase anonymity. Upon

arrival at the laboratory, subjects were seated randomly. An experimental assistant then handed

out printed versions of the instructions and read the instructions out loud. Subsequently, sub-

jects filled in a computerized control questionnaire verifying their understanding of the instruc-

tions, and the experiment did not start until all subjects had answered all questions correctly.

The subjects then played 50 voting games in committees of size three (N = 3), with random

rematching after each game (see Figure 4 in Appendix B.2 for a composite screenshot). After

each game, the subjects received feedback on the state, payoffs, aggregate behavior and the

aggregate signal profile. Under Majority, the timing of each round was as follows.

Majority Observe private signal si ∈ {R,B}. Send a public message to their group mi ∈ {R,B}.

Observe message profile. Submit vote vi ∈ {R,B}. Observe state, votes, outcome, and

payoffs for this game.

Under Unanimity, the timing of each round was identical to Majority aside from the voting

stage. We did not allow for an infinite number of rounds of voting as in the theoretical model.

Instead, subjects were given three chances to reach a unanimous decision, after which all sub-

jects were assigned a default vote of R. This decision rule replicates the most important feature

of Unanimity—that the final vote profile is uniform for any committee decision—and insures

that a decision is reached in a reasonable time frame. This “default option” is the conservative

choice in relation to our experimental hypotheses, as it ensures that the frequency of commit-

tee decisions equal to the non-expressive option under Unanimity is not driven by the default
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option. Additionally, analogous to the Unanimity rule, this game structure also admits an equi-

librium in which all agents truthfully communicate their private messages and uniformly vote

for the committee-optimal option.10

Unanimity The only difference to Majority is in the voting stage: Submit vote v1
i ∈ {R,B}. If

vote is unanimous proceed to Outcome Stage. Otherwise, again submit a vote v2
i ∈{R,B}.

If vote is unanimous proceed to Outcome Stage. Otherwise, submit a final vote v3
i {R,B}.

If vote is not unanimous, all subjects are assigned the vote vi = R. Proceed to Outcome

stage.

The format of allowing for multiple straw polls is similar to the procedure used in many jury de-

liberations. It is possible, however, that subjects use the multiple rounds of voting as additional

communication and that this richer strategic space explains the higher degree of information

aggregation we observe under Unanimity. We address this concern in a robustness section

in the Appendix, and show that the higher degree of information aggregation observed under

Unanimity is almost entirely driven by groups that reach a decision in the first round of voting,

see Figure 7, which suggests that additional rounds of voting under Unanimity is not driving

our results. Upon completion of the experiment, subjects left the laboratory and were paid

individually in a separate room by an experimental assistant.

10This result follows as a corollary of Theorem 2—since the final profile of votes is homogenous in all decisions,

any deviation from truthful communication and committee-optimal voting leaves agents weakly worse off. Ad-

ditionally, since B is optimal only after three signals B for both high- and low-expressive payoffs, this decision

rule admits an equilibrium where agents optimally aggregate information by babbling in the message stage and

voting sincerely. As we show below, however, a relatively high number of subjects communicate truthfully under

unanimity and respond to messages of other subjects in their voting behavior, and 66 percent of groups reach a

unanimous decision in the first round of voting.
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3.2 Theoretical Predictions and Experimental Hypotheses

Proposition 2 shows that for a wide range of expressive payoffs, truthful communication is

ruled out in responsive equilibria under Majority voting. The expressive payoffs induced in the

experiment, 10/40 and 15/35, are comparably small in the sense that they do not dominate the

common-value payoffs from matching the committee decision to the state, but are large enough

to satisfy K ≥ K′ as defined in Proposition 2. That is, in both Majority treatments, expressive

payoffs are large enough to suppress truthful communication in equilibrium, which yields the

following hypothesis.

Hypothesis 1. Messages are more likely to be truthful under Unanimity than under Majority

after R signals but not after B signals.

Proposition 2 shows that Majority may induce asymmetric misreporting since agents best-

respond to truthful reporting by sending truthful messages given a signal of B, and misreport

given a signal of R to induce their co-players to vote for B. Additionally, Lemma 1 shows that

agents who receive a signal of R and misreport will vote R, given that their co-players vote for

B with a higher probability. We refer to this as the free-rider problem of the Majority rule.

As a result of the free-rider problem, Propositions 2 and 3 predict that Unanimity will out-

perform Majority in terms of optimal information aggregation. Additionally, based on the

behavioral model we predict that information aggregation will disproportionately fail when the

aggregate profile of signals indicates that the committee should select B: If a majority of sub-

jects receive B signals, then the free-rider problem implies that R will be selected with positive

probability. If a majority of subjects receive R signals, however, then the committee will select

R with high probability since subjects playing a free-rider strategy will vote R regardless of the

messages. Therefore, our model suggests the following hypothesis.

Hypothesis 2. Information is aggregated more efficiently under Unanimity when the committee-

optimal decision is B but not when the committee-optimal decision is R.

Conditional on resolving Hypotheses 1 and 2 as predicted, theoretically, the channel for the
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increased level of information aggregation under Unanimity could be twofold. On the one

hand, committee members may anticipate and account for the more truthful messages under

Unanimity. On the other hand, even if subjects hold the belief that their co-players’ messages

are truthful, Lemma 1 shows that Majority induces a coordination problem in the voting stage

that may still prevent optimal information aggregation.

Therefore, we continue our analysis by identifying the mechanisms behind any relative decrease

in information aggregation under Majority. First, we consider the question of whether subjects

account for the average level of truthful reporting in their voting decisions.

Hypothesis 3. Subjects anticipate and respond to more truthful messages under Unanimity.

Second, Lemmas 1 and 2 predict that agents will best-respond to truthful reporting by free-

riding, i.e. by misreporting R signals to induce B votes of their co-players while personally

voting for R. This prediction provides us with an opportunity to verify the causal mechanism

predicted by our model.

Hypothesis 4. A significant share of subjects strategically misreport under Majority to free

ride.

If the findings of the experiment negate this prediction, then subjects may be falsely reporting

their signals for reasons other than what we predict, and hence our model would be falsified.

4 Analysis of the experiment

We address the four experimental hypotheses successively. Table 2 provides a first overview of

the experimental results, delineating the truthfulness of messages and the level of information

aggregation by decision rule, expressive payoffs and signal.
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Table 2: Average treatment effects in relation to Hypotheses 1 and 2

Expressive payoff Low High
Decision Rule Maj Una Diff Maj Una Diff

Truthful message if R signal 90% 96% 0.057∗∗ 80% 94% 0.142∗∗

Truthful message if B signal 84% 86% 0.018 87% 86% -0.009

Committee-optimal decision R 80% 79% -0.008 88% 86% -0.019
Committee-optimal decision B 60% 83% 0.237∗∗ 61% 83% 0.217∗∗

Note: The results on significance of differences between the treatments stem from linear probability models con-
trolling for unobserved heterogeneity by multi-level random effects on sessions and subjects within sessions (in
one-sided tests according to our hypotheses). Here, ∗ denotes significance at 0.1 level, ∗∗ denotes significance at
0.05, and ∗∗∗ denotes signifance at 0.01.

4.1 Are messages more truthful under Unanimity?

The upper two lines of Table 2, and similarly Figure 1, provide information on the truthfulness

of communication, disaggregated by treatment and signal as required to evaluate Hypothesis 1.

The asymmetric prediction is satisfied for both signal R and signal B: Given a signal of R, in

both the Low and High expressive payoff conditions, messages are significantly more truthful

under Unanimity than under Majority. That is, with a signal of R, misreporting increases from

4% to 10% given Low expressive payoffs, and from 6% to 21% given High expressive payoffs.

In contrast, truthful reporting given a signal of B is very stable across all conditions: The

differences between Unanimity and Majority are very small (at most two percentage points) and

far from being significant, confirming the second part of Hypothesis 1. Across all treatments,

the average rate of truthful reporting, roughly 85 percent, is lower than might be expected given

the results of Guarnaschelli et al. (2000) (their experiment considers homogeneous payoffs,

but is otherwise comparable). Focusing only on Unanimity, however, the relative frequency of

truthful messages is comparable with Guarnaschelli et al. (2000).

Result 1. As predicted (Hypothesis 1), messages are more truthful in Unanimity after R signals

and equally truthful after B signals.

A related point apparent in Figure 1 is worthy of mention. Under Majority, the level of misre-

porting given a signal of R more than doubles for the High expressive payoff treatment, from

10% to 21%. This finding is consistent with the quantitative increase in the incentive to strategi-
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Figure 1: Average levels of truthful messaging (mi = si) by signal and treatment.

cally misreport given a signal of R. In contrast, the average level of truthful reporting by signal

is stable across the Low and High treatments under Unanimity. This finding corroborates Result

1 and suggests that, under Majority, the level of truthful communication is sensitive to the size

of the incentive to engage in strategic misreporting. Section B.2 in the Appendix further shows

that the results are highly robust to experience.

4.2 Is information aggregated more efficiently under Unanimity?

While truthful communication is a necessary condition for the committee to behave optimally,

the most pertinent comparison between Majority and Unanimity is the ability of the committee

to efficiently aggregate the private information of its members. Figure 2 shows the committee

decision as a function of the aggregate profile of signals, and the lower two lines in Table 2

provide the relative frequencies of committee-optimal decisions, disaggregated by whether R

or B is optimal—across all conditions examined here, the committee-optimal decision is B if

and only if all subjects have received B signals.11 As detailed in Hypothesis 2, our prediction

is that there is no difference between Unanimity and Majority if the expressive option, R, is

committee optimal, but that under Unanimity the committee will be more likely to select the

non-expressive option, B, when it is optimal.

11In the low-expressive payoff treatment, aggregate utility is maximized if the committee selects B given two signals

of B and only two committee members vote for B.
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Figure 2: Average levels of outcome B as a function of the aggregate profile of signals (not
messages) by treatment.

The experimental results are very sharp. If R is committee optimal, there is virtually no dif-

ference in the probability that the committee selects R between Unanimity and Majority: 80%

versus 79% for Low, and 88% versus 86% for High expressive payoffs. If B is committee op-

timal, the difference is large and highly significant: 22 percentage points (61% versus 83%)

for Low expressive payoffs, and 23 percentage points (60% versus 83%) for High expressive

payoffs. In all, the probability that the committee correctly aggregates information given three

signals for B increases by over a third under Unanimity.12

Result 2. As predicted (Hypothesis 2), the committee is significantly more likely to select the

optimal option under Unanimity if the non-expressive option, B, is committee optimal, and the

difference between the two decision rules is negligible if R is optimal.

4.3 Do subjects anticipate more truthful messages under Unanimity?

Having established that Unanimity results in more truthful messaging and increased informa-

tion aggregation (Hypotheses 1 and 2) we now turn to the more subtle questions regarding

mechanism (Hypotheses 3 and 4). For a first pass at exploring the effect of messages under the
12The difference between the two decision rules is also slightly larger in the 2nd half of the experiment (see Section

B.2 in the supplementary appendix). Additionally, note that subjects are more likely to select B given two signals

of B under Unanimity, although this difference is attenuated in the second half of the experiment.
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different decision rules, we estimate a discrete choice model that considers each individual’s

voting decision as a function of the voting rule, and the information known by the subjects at

the time they take their voting decision. Table 3 summarizes the estimation.

The regression results indicate that subjects respond to both an own signal of B and to co-

player’s messages for B by voting for B with a higher probability. Moreover, under Unanimity,

the impact of a message for B from a co-player has a similar impact on voting behavior as an

own signal for B. Under Majority, however, subjects are significantly less likely to respond to

co-players’ messages of B, relative to their own signal (see the negative coefficient on the inter-

action of “Majority” and “Other’s messages”). This strongly suggests that subjects anticipate

the higher proportion of misreporting observed under Majority, which negatively impacts the

committee’s ability to efficiently aggregate the information of its members.

Table 3: Probit estimations to explain individual votes/opinions for B

Vote/Opinion B High

Own signal B 1.896
(0.102)

∗∗∗

Number of others’ messages B 1.928
(0.0877)

∗∗∗

Majority 1.453
(0.238)

∗∗∗

Majority × own signal B −0.543
(0.129)

∗∗∗

Majority × others’ messages B −1.016
(0.104)

∗∗∗

Constant −4.228
(0.192)

∗∗∗

N 4650

Note: We report standard errors in parentheses controlling for unobserved heterogeneity by multi-level random
effects on sessions and subjects within sessions.∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This direct comparison between the decision rules is suggestive of the predicted Hypothesis

3. However, we can make the analysis more precise by controlling for differences in expected

payoffs from voting B under the two decision rules. That is, while we see an increased respon-

siveness to co-players’ messages under Unanimity, the choice environment in the voting stage

is not directly comparable to Majority. Therefore, we supplement the finding of the discrete

choice model by investigating the impact of co-player’s messages on the subjects’ implied be-

23



liefs, taking into account the actual differences in expected payoffs. We present this analysis in

the Online Appendix, Section B, which confirms that subjects’ beliefs react more strongly to

co-players’ messages under Unanimity:

Result 3. Subjects’ beliefs react more strongly to co-players’ messages under Unanimity, show-

ing that they respond to the increased truthfulness of messages.

4.4 Do subjects strategically misreport to free-ride?

Lastly, we explore the theoretical prediction that subjects will best-respond to truth-telling by

misreporting and free-riding. For suggestive evidence regarding free-riding, it is instructive

to first consider the average voting strategy of subjects in the case of three messages for B

(M# = 3). In this case, for the Majority/High expressive payoff treatment where misreporting

is the most common, subjects who misreport their signal vote for B just 16 percent of the

time, relative to 69 percent for subjects who sent a truthful message of B (16 percent is also

much lower than the analogous rate under Unanimity/High, which is 54 percent; see Table 5

in the appendix). This low rate of voting for B is consistent with the free-riding strategy of

misreporting B and then voting for R.

To identify whether Majority causes subjects to play the “free-riding” strategy, however, we

need to link messages and voting at the individual level. Establishing this link is critical, as

free-riding is not the only conceivable reason to misreport signals. Another reason is to attempt

persuasion. For example, while our model assumes that agents are risk neutral, if subjects

have heterogenous risk preferences, they may hold different preferences regarding the optimal

option conditional on a given set of signals. Therefore, subjects who are, say, less risk averse

than average may choose to misreport R-signals to increase the probability that the committee

chooses B given two signals for B. The difference to free-riding is that persuasive misreporting

is followed up by also voting for the misreported option (in case opponents sent two messages

for B), while free-riders will vote R regardless of their opponents’ messages.

Overall, it is easy to think of at least five classes of individual strategies: In addition to the
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three misreporting strategies outlined above, “strategic Red/Blue” as persuasive misreporting

and “free-riding” as strategic misreporting, we also allow for subjects who are honest in the

messaging stage and believe that other agents message honestly (“honest/naive”), which is our

equilibrium prediction for Unanimity, and subjects with noisy behavior as a residual family to

collect the players that do not fit into either of the other four classes (“noisy”). Such apparently

noisy behavior may result from either misunderstanding the game or, more likely, from playing

inconsistently over the course of the session.
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Figure 3: Classification of types by decision rule.

Table 5b in the Online Appendix presents the estimated strategy weights and strategy parame-

ters, alongside the bootstrapped standard errors and statistical tests of our hypothesis. The main

results are summarized in Figure 3, and allow us to conclusively conclude that:

Result 4. Subjects use honest/naive strategies more frequently in Unanimity and strategically

misreport to free-ride in Majority.

To summarize, our experimental results show that expressive payoffs lead to strategic commu-

nication and inefficient information aggregation when committees take decisions via Majority
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rule. Additionally, relative to Unanimity, we demonstrate that subjects are less responsive to

other subjects’ messages under Majority, both in terms of the voting decision and their implicit

ex-post beliefs regarding the state of the world. We find evidence that this decrease in the ef-

fectiveness of communication is due to the fact that, under Majority, a subset of subjects adopt

a “free-riding” strategy, falsely reporting the non-expressive option to encourage other subject

to vote for this option, while personally voting for the expressive option.

5 Conclusion

In this paper, we explore strategic communication in committees that are subject to mixed mo-

tives, and the impact on the quality of committee’s decisions. Using a theoretical model, we

show that when the committee aggregates votes via a majority rule, there are no equilibria

with truthful communication and responsive voting despite the fact that committee members

have homogeneous preferences over the committee decision. In contrast, an equilibrium with

truthful communication and committee-optimal decisions exists under unanimity rule for any

expressive payoffs, as long as committee members have homogeneous preferences over which

committee decision to take given the aggregate profile of signals. This finding also suggests a

novel rationale for the use of a unanimity rule: in settings with expressive payoffs, efficiency

can only be assured under a decision rule that uniformly enforces responsibility for the com-

mittee decision across all committee members.

We test the predictions of the model using laboratory experiments. Our experimental results

broadly support for the theoretical predictions. We find that, relative to a unanimity rule, sub-

jects are more likely to falsely report their signal and committee decisions are less likely to

aggregate private information under majority rule. Moreover, we identify that this decrease

in information aggregation can be attributed to subjects adopting a “free-rider” strategy under

majority, which leads to less effective communication and sub-optimal committee decisions.
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A Theoretical Appendix

A.1 Robustness

In order to conveniently discuss robustness and extensions, we continue to restrict our attention
to the simple model with a binary signal space and an expressive payoff, K, for option R. In
contrast to the analysis above, some of our results will be sensitive to the sign of K. Therefore,
to facilitate the exposition of the results, we will explicitly consider both negative and positive
expressive payoffs; i.e. K ∈ (−1,0)∪ (0,1).

Additionally, we define σ∗ ≡ σ(si|si) = 1 and τ∗(si,mi,M#) as follows:

τ
∗(si,mi,M#) =

{
1, if M# < S̄,
0, if M# ≥ S̄.

where S̄, defined in the previous subsection, is the minimum number of signals for B required
for X = B to be committee-optimal.

Non-homogenous expressive payoffs Intuitively, a robustness concern is posed by the pos-
sibility that committee members may not be subject to a homogenous expressive payoff. For
example, elected representatives may face different expressive payoffs depending on their par-
tisan affiliation and the composition of their individual districts. The following analysis shows
that heterogeneity in the expressive payoff does not eliminate the collective action problem
under Majority and, as long as K is not too large, then an equilibrium that results in committee-
optimal outcomes exists under Unanimity.
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Formally, we consider the following modification to our benchmark model: N+ ⊂ N receive
a expressive payoff of K if vi = R, and N− ⊂ N receive a expressive payoff of K if vi = B.
Members of these two groups use voting strategies τ+(M#) and τ−(M#), respectively. We
assume without loss of generality that |N+|> |N−|, and assume that agents may condition their
strategy on their expressive “type.”

Proposition 4. If dv = Majority and committee members face heterogenous expressive payoffs,
then for any symmetric equilibrium that exhibits truthful communication (σ(si|si) = 1) and
responsive voting strategies τ+(M#), τ−(M#), there exists S′ ≥ (N +1)/2 such that:

• τ+(M#) = 1, τ−(M#) = 0 if M# < S′,
• τ+(M#) ∈ (0,1), τ−(M#) = 0 if M# ≥ S′.

Proof: This proof follows the same logic as Lemma 1. If M# < S̄, then each committee member
maximizes their individual payoffs by voting according to their expressive payoff.

Next, for M# ≥ S̄, note that for a responsive equilibrium to exist, τ+(M#) must be in [0,1), for
the majority expressive type. By the same logic as Lemma 1, τ+(M#) = 0 cannot be part of an
equilibrium strategy, since in this case no agent is pivotal. Instead, there exists a τ+(M#)∈ (0,1)
that constitutes a best response to truthful communication and τ+(M#) = 0. �

The committee still faces the exact same free-rider problem under Majority with heterogenous
expressive payoffs as with homogenous expressive payoffs (as illustrated by Lemma 1), with
the one exception that the free-rider problem is limited to the set of agents in N+—when the
profile of signals indicates that B is optimal, then some agents in N+ must vote B for the
committee decision to equal B. Proposition 4 also illustrates that the free-riding problem under
heterogenous expressive payoffs still result to an incentive to misreport for both types of agents.
That is, since agents in N+ play a mixed strategy when M#≥ S′ the committee is biased towards
option R given truthful communication, which gives agents an incentive to misreport when they
receive a signal of R.

Additionally, the optimality result under Unanimity is robust to heterogenous expressive pay-
offs, as long as K is small enough for the committee-optimal decision to be well-defined, in the
sense that the optimal decision of a DM with access to the full profile of signals is independent
of whether the DM receives a expressive payoff for voting R or for voting B. That is, take the
following definition of X+(s) and X−(s).

Definition 4. Take X+(s) (X−(s)) to be the committee decision by a DM with preferences
equivalent to that of agents in N+ (N−) who has access to the complete profile of signals, s,
and whose vote determines the committee decision, X = vDM.

The following result shows that an equilibrium exists with truthful communication and optimal
committee decisions under Unanimity, even when expressive payoffs are heterogenous as long
as K is small enough that X+(s) = X−(s) for all signal profiles.

Corollary 1. In any game with heterogenous expressive payoffs, dv = Unanimity and K such
that X+(s)=X−(s), an equilibrium exists with truthful messaging (σ(si|si)= 1) and committee-
optimal decisions.
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This corollary follows directly from Proposition 3: as long as the committee agrees on the
optimal decision for each signal profile, then it is an equilibrium under Unanimity to truthfully
communicate and vote for the optimal decision.

Non-cheap talk in the communication stage For two reasons, talk in the communication
stage may not be cheap: lying aversion and expressive payoffs from messages. We begin with
a comment on lying aversion. As we discuss in the introduction, many experimental papers
have documented that individuals are hesitant to lie, even when lying is in their best interest.
Note, however, that our prediction that Unanimity performs better than Majority when agents
are subject to expressive payoffs does not rely on non-truthful communication.

Corollary 2 (Lying aversion). Assuming σ(si|si) = 1 (truthful communication), there are no
symmetric equilibria with committee-optimal decisions under Majority.

Corollary 2 follows directly from Lemma 1, which illustrates that agents face a coordination
problem under Majority when the aggregate signal profile indicates that the non-expressive
option is committee-optimal. This shows that the result that Unanimity outperforms Majority
does not depend on the prediction of non-truthful communication (lying aversion does not
impact the predictions of the model under Unanimity), and therefore is robust to lying aversion.

Related, in certain situations agents may also risk being exposed to expressive payoffs based on
their communications to the committee. For example, if agents receive a negative reputation-
based payoff for voting for B, then they might receive a similar payoff if it is revealed that
they supported B in the communication stage. Next, we formally detail when communication
payoffs prevent truthful communication under Unanimity.

To fix ideas, consider the following example: in addition to expressive payoffs, assume agents
receive a negative payoff of −K if they vote for B, or if it is publicly revealed that they commu-
nicated support for B. The probability that the committee’s communication is publicly revealed
is equal to δ. As in the baseline model, we normalize the expressive payoffs as a positive value
for voting/communicating R. The expressive payoffs in the extended model are as follows:

u2(X ,ω,vi,mi) =


δK, if vi = B,mi = R
K, if vi = R,
0, otherwise.

The following proposition shows that Unanimity is robust to communication-based payoffs if
the risk of communication becoming public is of positive but comparably small relevance next
to one’s final vote.

Proposition 5 (Truthful Messaging with Communication Payoffs). In any game Γ̂ with K > 0,
dv = Unanimity, and B is committee-optimal given S# = N, there exists a δ′ such that if δ < δ′,
an equilibrium of the game exists with truthful messaging and committee-optimal decisions.

Proof: We prove the result by construction. By Corollary 3, τ∗(si,mi,M#) is a best response to
truthful communication.
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Next, we show that σ∗ is a best response to truthful communication given τ∗(si,mi,M#) and δ

small. If si = R, then mi = R is a best response by Corollary 3, since deviating to mi = B results
in an additional payoff loss of δK. If si = B, then deviating to mi = R results in a payoff gain
of δK. However, given τ∗(si,mi,M#), deviating to mi = R results in X = R when i’s message is
pivotal; i.e. S# = S̄. Therefore, the relative expected payoff of deviating to mi = R is equal to:

δK−Pr(S# = S̄|si)[Pr(ω = B|S̄)−Pr(ω = R|S̄)−K].

Since this expression is nonpositive for δ ≤ δ′ = (Pr(S# = S̄|si)/K)[Pr(ω = B|S̄)− Pr(ω =
R|S̄)−K], truthful messaging is a best response to truthful communication and τ∗(si,mi,M#)
for δ≤ δ′.

Lastly, we show that there is no joint deviation in mi,vi that is a best response to (σ∗,τ∗(si,mi,M#)).
Again, if si = R, then this follows from Corollary 3. If si = B and mi = R, then τ∗(si,mi,M#)
is a best response for M# 6= S̄−1. Moreover, the voting outcomes are equivalent to (σ(si|si) =
1,τ∗(si,mi,M#)) for all S# 6= S̄−1.

Therefore, the only possible deviation from (σ(si|si) = 1,τ∗(si,mi,M#)) that could be a best
response is mi = R, τ∗(si,mi,M#)) for M# 6= S̄− 1 and τ(B,R, S̄− 1)) = 0. In this case, the
committee would not reach an agreement when M# 6= S̄−1, and the relative expected payoff of
deviating is:

δK−Pr(S# = S̄|si)[Pr(ω = B|S̄−K],

which is strictly lower than zero for δ≤ δ′. �

Note that even under Unanimity, agents’ messages are not always pivotal for the committee
decision. Therefore, agents have an incentive to report R given a signal of B, analogous to
the incentive to vote R under Majority. In contrast to the voting stage, however, the probabil-
ity of a message being pivotal is strictly positive even when other agents play pure (truthful)
strategies. Therefore, truthful messaging can be supported as an equilibrium strategy even with
communication-based payoffs as long as δ is not large.

Expressive payoffs in the coordination stage Briefly, let us also consider the related case
where agents are exposed to expressive payoffs in the coordination stage, when they coordinate
on the final voting decision (straw poll), and detail the robustness of Unanimity to this extension
of the model. To make the contrast as stark as possible, we consider the case where agents
receive a payoff of K for any round in which vt

i = R. That is, given a unanimous decision is
reached in round T , agents receive the following expressive payoffs:

u2(X ,ω,{vt
i}) = K×

T

∑
t=1

Ivt
i=R.

The following proposition details the partial robustness of Unanimity rule to expressive payoffs
for voting in the straw poll.

Proposition 6 (Truthful Messaging with Coordination Payoffs).

1. In any game Γ̂ with K < 0 and dv = Unanimity, an equilibrium with truthful messaging
and committee-optimal decisions exists where the committee reaches a decision in the
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first round of voting in the straw poll.
2. In any game Γ̂ with K > 0 and dv = Unanimity, there is no stationary equilibrium

with truthful messaging where the committee selects B with probability one when B is
committee-optimal.

Proof of Proposition 6: (1) If K ∈ (−1,0), then existence of an equilibrium with truthful com-
munication and τ = τ∗(si,mi,M#) follows from the same logic as in the proof of Proposition
2: Any deviation that changes i’s payoffs results in either (1) X = B and vi = B with positive
probability for some S# < S̄, (2) X = R with positive probability for some S# ≥ S̄, or (3) that the
committee decision is delayed past the first round of voting for some M#, or some combination
of all three. Since (1), (2), and (3) all imply a weak decease in i’s expected payoffs, no deviation
from (σ∗,τ∗(si,mi,M#)) is profitable.

(2) For K ∈ (0,1), take M#′ ≥ S̄. If agents play τ∗(si,mi,M#), then all agents vote B with
probability one when M# = M#′ . Therefore, if i deviates to τ(si,mi,M#′) = 0, no agreement is
reached in any voting round when M# = M#′ . Moreover, i receives a payoff of K in each round
of voting, which is a profitable deviation. �

Intuitively, when expressive payoffs are negative, then agents have an incentive to reach a de-
cision in the first round of voting to avoid additional expressive payoffs that may accrue in any
additional rounds of voting. When expressive payoffs are positive, however, then agents have
an incentive to vote for as many rounds as possible, accruing positive expressive payoffs each
time they vote for R. Therefore, while vt

i = R is a best response given M# < (N +1)/2 (deviat-
ing to vi = B is not individually optimal) when expressive payoffs are positive, if all agents vote
for B with certainty for some M#, then agent i has a best response to deviate to vt

i = R, since
voting in the straw poll will proceed indefinitely and i will receive K in each round.

Status-Quo Unanimity rule In our baseline analysis, we consider a unanimity rule that re-
quires that all committee members vote unanimously for an option to be chosen. This differs
from a status-quo unanimity rule, where one option is designated as the status-quo ex ante, and
is selected if one or more committee members vote for the status quo.

Definition 5 (Status-quo unanimity). Each player submits a vote vi. The final decision X is B
if all players vote B, and is R otherwise.

In our analysis of the status-quo unanimity rule, we find that it is “robust” to positive (relative)
payoffs for voting for the status quo, but faces similar problems as Majority when committee
members face negative (relative) expressive payoffs.

Proposition 7 (Status-Quo Unanimity).

1. In any game Γ̂ with K > 0 and dv = Status-Quo Unanimity, there exists an equilibrium
with truthful messaging and committee-optimal decisions.

2. In any game Γ̂ with K < 0 and dv = Status-Quo Unanimity, there is no symmetric equi-
librium with truthful messaging and committee-optimal decisions.

Proof of Proposition 7: For (1), by contradiction, assume there exists a profitable deviation from
(σ∗,τ∗(si,mi,M#)), (σ′,τ′(si,mi,M#)). For i to be better off, (σ′,τ′(si,mi,M#)) must introduce
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a positive probability that either (i) vi = R for some S# ≥ S̄, or (ii) X = B for some S# < S̄
(or both)—any other changes in payoff-relevant outcomes would decrease i’s expected utility.
However, under status-quo unanimity, if vi = R then X = R, and if X = B then vi = B, which
implies that both (i) and (ii) decrease i’s expected utility.

(2) follows as a corollary to Proposition 1: Note that given K < 0, the free-riding condition is
satisfied for any S# < (N + 1)/2 other than S# = 1. Therefore, given truthful communication,
there is no symmetric equilibrium in which Pr(X = R|S#) = 1 for S# ∈ {0, [2,(N− 1)/2]} by
the same argument as in the proof of Proposition 1. �

When committee members face a positive payoff for voting for the status quo, then an equilib-
rium with truthful communication and committee-optimal voting exists under both non-status-
quo and status-quo unanimity rules. For example, if committee members receive a positive
expressive payoff for voting for R and option B is committee optimal, then all committee mem-
bers must forgo the expressive payoff to choose the committee-optimal option. Thus, in the case
of K > 0, a status-quo rule eliminates the collective-action problem that occurs under Majority
when voting for B is committee optimal.

However, if committee members face a negative payoff for voting for the status quo, then a
status-quo unanimity suffers from the same free-riding problem as majority. For example,
if committee members receive a negative expressive payoff for voting for R and option R is
committee optimal, then only one committee member must pay the negative expressive payoff
under a status-quo unanimity rule to choose the committee-optimal option—that is, a status-
quo unanimity rule functions as sub-majority rule for option R, requiring only a single vote for
R to be selected. Therefore, analogous to a majority rule, given truthful communication there
is no symmetric equilibrium in which the committee selects R with probability one whenever R
is committee optimal.

Generalized Results Next, we show that our main results hold with a generalized state-space
and a broad set of expressive payoffs. That is, we consider the following generalizations of
our framework: Each agent receives a private signal regarding the state, si, drawn i.i.d. from
a finite signal space S according to the probability distributions pω ∈ ∆(S). Each signal is
partially informative, pR(s) 6= pB(s), but no signal perfectly reveals the state of the world in the
sense that pω(s)> 0 for all s ∈ S and ω ∈Ω. We define S = SN and let s ∈ S indicate a specific
profile of signals. Prior to voting, agents engage in communication: agents simultaneously send
messages, mi ∈ S, that are publicly observable (agents are free to send any message, regardless
of their private signal).

Consistent with our motivation of studying information aggregation with expressive payoffs,
the committee members’ payoffs are a function of the committee decision, the underlying state
of the world, and the agent’s vote vi. Formally, agents’ preferences are represented by a utility
function, u(X ,ω,vi) : {R,B,D}×{R,B}2→R. For conceptual reasons, let us split up the utility
function as above:

u(X ,ω,vi) = u1(X ,ω)+u2(X ,ω,vi),

where u1(X ,ω) represents the common-value payoff for matching the committee decision to
the state of the world, and u2(X ,ω,vi) represents the expressive payoffs. This formulation is
fairly general, allowing for expressive payoffs that can vary based on the committee decision
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and the state of the world; for example, an FDA committee member may receive a negative
reputation payoff only if a drug that is approved by the committee, is later shown to result in
severe side-effects, and the committee member individually voted to approve the drug. We
impose the restrictions that u1(ω,ω)> u1(X ,ω) and u(ω,ω,vi)> u(X ,ω,v′i) for all vi,v′i,ω and
X 6=ω, which implies that agents’ payoffs from the committee choosing the option that matches
the state is greater than any expressive payoff—these restrictions are not strictly necessary, but
imply a payoff structure analogous to the standard models of information aggregation, where
agents’ primary motivation is to match the decision to the state.

We make one additional assumption regarding payoffs. Let Eω[u(X ′,ω,vi = X)|s] denote the
expected utility, taken over the states of the world ω, when the committee decision is X ′, player
i votes vi = X (X may equal X ′), and signal profile is s:

Assumption 1. For all s, there exists an decision X ′ such that Eω[u(X ′,ω,vi =X ′)|s]> u(D,ω,vi)=
0.

This assumption entails that, given knowledge of the signal profile s, there exists a possible de-
cision X ′ such that all committee members are better off if the committee reaches this decision
rather than deliberating in perpetuity.

We denote the game by Γ= 〈PR,S, pω,N,dv,u〉, and agents’ strategies are pairs (σi(mi|si),τi(si,mi,m)).
Lastly, we introduce a definition of what we refer to as the Free-Riding property. We call it the
Free-Riding property since one of our main results shows that when expressive payoffs result
in this property being satisfied, they cause an incentive to free-ride under Majority.

Definition 6 (Free-Riding). A game Γ = 〈PR,S, pω,N,dv,u〉 satisfies Free-Riding if there exists
a vector of signals s′ such that the following two conditions are satisfied:

1. Given a committee decision for X∗ such that

Eω[u(X∗,ω,vi = X∗)|s′]> Eω[u(X ′,ω,vi = X ′)|s′],

with X ′ 6= X∗, agents individually prefer to vote for X ′,

Eω[u(X∗,ω,vi = X ′)|s′]> Eω[u(X∗,ω,vi = X∗)|s′].

2. Take Ns to be the set of agents with signal s given s′; there is no signal set Ŝ⊆ S such that
| ∪s∈Ŝ Ns| = (N + 1)/2, i.e. such that the agents with signals in Ŝ constitute a minimal
winning coalition.

The first condition of the Free-Riding property requires that expressive payoffs are non-trivial
in the sense that they may induce a conflict between collective and individual interest for at
least one signal profile. Absent expressive payoffs (u2 = 0), Γ does not satisfy this condition
since agents’ utilities are independent of their individual votes: u(X ,ω,vi 6= X) = u(X ,ω,vi =
X) for all ω. In contrast, a simple expressive payoff for voting for R satisfies condition 1
straightforwardly since, holding the committee decision constant, agents receive a higher payoff
from individually voting for R regardless of s.

The second condition of the Free-Riding property implies that agents cannot always coordinate
on who may free-ride based solely on their signals s′. As a result, there can be no symmetric

A-7



pure strategy equilibrium where the winning option always receives exactly (N+1)/2 votes un-
der Majority. For example, a simple expressive payoff for voting for R satisfies both conditions
of the Free-Riding property since for any homogenous signal vector (s′ such that s′i = s′j for all
i, j) where option B maximizes the expected value of u1, each agent prefers that the committee
selects B, but individually prefers to vote R.

Main Results: Our first main result illustrates the free-riding problem that can occur un-
der Majority when committee members are subject to expressive payoffs. It establishes that
the Free-Riding property is indeed a sufficient condition for the non-existence of a symmetric
equilibrium with truthful communication and committee-optimal decisions.

Theorem 1 (Non-existence under Majority). For any game Γ with dv = Majority satisfy-
ing Free-Riding, there does not exist a symmetric equilibrium with truthful communication
(σ(si|si) = 1) and committee-optimal decisions.

In a game that satisfies Free-Riding, expressive payoffs introduce a coordination problem due
to the fact that, under majority rule, it is possible for the committee to select a given option
even when a minority of agents vote for the other option. Therefore, under Majority it will
not be a best response for all agents to vote for the committee-optimal decision given a signal
profile of s′, since a single agent can deviate to voting for the other option and receive a higher
expected utility. This implies that, given truthful communication, it is not a best-response for
agents to play a symmetric voting strategy that selects the committee-optimal decision for all
signal profiles.

Proof of Theorem 1: We prove the result by contradiction. Assume an equilibrium, (σ∗,τ∗) exist
with truthful communication and committee-optimal outcomes. Given truthful communication,
m = s. Therefore, for each m, the associate set of τ∗(si,mi,m) must imply that the committee
selects option R (B) with probability one if R (B) is committee-optimal given m.

Take s = s′, and take R to be the committee optimal outcome given s′ (the same argument holds
when B is committee optimal). In this case, Pr(X = R|τ∗(si,mi,s′)) = 1, which implies that a
majority of agents must vote vi = R with probability one.

Given condition (2) of Free-Riding, however, there is no partition of s′, s1,s2, such that all
agents with the same signal are in the same subset of s′, and ∑

i Is′i∈s1
= (N +1)/2. Therefore,

since (σ∗,τ∗) is a symmetric pure strategy that selects X = R with probability one when s = s′,
it must be the case that τ∗(si,mi,s′) specifies that more than (N + 1)/2 agents play vi = R.
However, given X = R, it is individually optimal to vote for B for s = s′. Therefore, it is a best
reply for agents with τ(si,mi,s′) = 1 to deviate to vi = B, given that no individual agent’s vote
is pivotal for the committee decision. This implies that (σ∗,τ∗) cannot be an equilibrium. �

Theorem 1 starkly contrasts with our main result for Unanimity.

Theorem 2 (Existence under Unanimity). For any game Γ with dv = Unanimity, there exists a
symmetric equilibrium with truthful communication and committee-optimal decisions.

Proof of Theorem 2: First, note that Unanimity limits the outcome set to points with vi = X , or
perpetual delay. Therefore, given utility functions of the form u : {X ,ω,vi} → R, agents have
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homogenous payoffs at all terminal nodes—this implies that there exists an equilibrium with
truthful communication and coordination on the optimal outcome.

For clarity, however, we prove the result by contradiction. Assume there exists a deviation
from the symmetric strategy σ(si|si) = 1, and τ(si,mi,m) = 1 for m ∈ SR and τ(si,mi,m) = 0
for m ∈ SB that results in a strictly positive increase in i’s expected payoffs, where SR and SB

are defined as in the main text as the subset of signal profiles where agents prefer X = R and
X = B respectively given vi = X .

Given that Unanimity limits the outcome set to points such that vi = X (or perpetual delay),
any deviation that changes i’s expected payoffs requires that the expected committee outcome
changes as a function of the underlying vector of signals for at least one profile of signals.
This implies that any profitable deviation results in either (1) X = B with positive probability
for some s ∈ SR, (2) X = R with positive probability for some s ∈ SB, (3) that no decision is
reached for some s (X = D), or some combination of all three. However, by the definition of
SR, SB and Assumption 1, all payoff-relevant changes (1), (2) and (3) imply that i’s expected
payoffs decrease or remain constant, which is a contradiction. �

A.2 Proofs for Section 2.2

Before proceeding with the proofs for Section 2.2, we introduce some additional notation.
First, let piv(x,M) denote the probability that i’s vote is pivotal under Majority when M−1 ∈
{(N−1)/2,(N +1)/2, ...,N−1} agents vote R with probability x, and all other agents vote R
with probability one:

piv(x,M) =
(M−1)!(N−1

2

)
!
(
M− N+1

2

)
!
x(N−1)/2(1− x)M−(N+1)/2,

Next, let S̄ denote the minimum number of total signals for B (S#) required for B to be committee
optimal. That is:

S̄ =

{
N +1, if Pr(ω = B|S#)−Pr(ω = R|S#)< K ∀ S#,
min{S# | Pr(ω = B|S#)−Pr(ω = R|S#)≥ K}, else.

Committee-optimal information aggregation prescribes that the committee play strategies such
that they select option R when the actual S# is smaller than S̄, and option B when S# is greater
or equal to S̄.

Proof of Proposition 1: First, given that τ j(, , ,)= 1 for j 6= i, the committee outcome is indepen-
dent of vi, which implies that Pr(X = ω|vi = R,M#,mi,si)+K > Pr(X = ω|vi = B,M#,mi,si).
Therefore, τi(, , ,) = 1 is a best response.

Second, given τi(, , ,) = 1, the committee outcome is independent of mi, which implies that for
any messaging behavior, a corresponding equilibrium exists with τi(, , ,) = 1. �
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Proof of Lemma 1: Define S′ as follows:

S′ =
{

N +1, if piv(0.5,N)[Pr(ω = B|S#)−Pr(ω = R|S#)]< K ∀ S#,
min{S# | piv(0.5,N)[Pr(ω = B|S#)−Pr(ω = R|S#)]≥ K}, else.

For M# < S′, the following expression holds for all x ∈ [0,1] since piv(x,N) is maximized at
x = 0.5:

piv(x,N)[Pr(ω = B|M#)−Pr(ω = R|M#)]≤ piv(0.5,N)[Pr(ω = B|M#)−Pr(ω = R|M#)]< K.

This implies that for M# < S′, piv(τM(M#),N)Pr(X =ω|vi =R,M#,mi,si)+K > piv(τM(M#),N)Pr(X =
ω|vi =B,M#,mi,si) for any τM(M#) and that there is no truthful equilibrium in which τM(M#)<
1 is a best response for M# < S′.

For M# ≥ S′, note that piv(x,N) is equal to zero for x = 0,1, and piv(x,N) is strictly increasing
over the domain [0,0.5) and strictly decreasing over (0.5,1]. Therefore, there exists a unique
τM(M#) ∈ (0,0.5] such that the best-response condition holds, and this τM(M#), denoted as
τ∗(M#), is implicitly characterized by the following equation:

piv(τ∗(M#),N) =
K

Pr(ω = B|M#)−Pr(ω = R|M#)
. (1)

Additionally, by the symmetry of piv(x,N) about 0.5, piv(1− τ∗(M#),N)[Pr(ω = B|M#)−
Pr(ω = R|M#)] = K, and 1− τ∗(M#) is the unique equilibrium in [0.5,1). �

Lemma 1 characterizes the form of equilibria with truthful communication and responsive vot-
ing given the assumption that voting behavior does not conditional on the individual signal and
message; i.e. τ(si,mi,M#) = τM(M#). Below, we extend Lemma 1 to include equilibria with
truthful communication and message-contingent voting. First, we define S

′′
(M#) as follows:

S
′′
(M#) = piv

(
N−1

2(M−1)
,M#

)[
Pr(ω = B|S# = M#)−Pr(ω = R|S# = M#)

]
−K.

Lemma 1’ (Voting Stage: Majority, Message-Contingent). Given dv = Majority, equilibria
with truthful communication, σ(si|si) = 1, and responsive voting either take the form outlined
in Lemma 1 (uniform voting), or the following form (message-contingent voting):

• τ∗(R,R,M#) = 1.
• τ∗(B,B,(N +1)/2) = 0 if S̄ = (N +1)/2.
• τ∗(B,B,M#) ∈ (0,1) if M# ≥ S

′′
(M#).

• τ∗(B,B,M#) = 1 else.

Proof of Lemma 1’: We begin by showing that τ∗(B,B,M#) constitutes a best response given
τ(R,R,M#) = 1. First, if S̄ = (N + 1)/2 and M# = (N + 1)/2, then it is a best response for i
to set vi = B if i is pivotal with probability one. Therefore, τ∗(B,B,(N + 1)/2) = 0 is a best
response since τ(R,R,M#) = 1, ensuring that i with si = B is pivotal when M# = (N +1)/2.

Next, note that piv(x,M) is strictly increasing over the domain [0,(N − 1)/(2(M− 1))) and
strictly decreasing over ((N− 1)/(2(M− 1)),1]. Therefore, given M# ≥ S

′′
(M#) there exists
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τ∗(B,B,M#) ∈ (0,(N− 1)/(2(M− 1))) that is a best response by the same argument as in the
proof of Lemma 1.

Likewise, if M# < S
′′
(M#) and M# 6= (N +1)/2, then τ(B,B,M#) = 1 is a best response to any

τ∗(B,B,M#) ∈ [0,1].

Next, we show that τ(R,R,M#) = 1 is a best response given τ∗(B,B,M#). If M# < S
′′
(M#) or

M# = (N+1)/2, then i with si = R is never pivotal, which implies that vi = R is a best response.
If M# ≥ S

′′
(M#), then τ(R,R,M#) = 1 is a best response if:

piv
(
(1− τ

∗(B,B,M#)),M# +1
)
< piv

(
(1− τ

∗(B,B,M#)),M#)
Simplifying this expression gives:

N−1
2

< M#(1− τ
∗(B,B,M#)),

which holds for τ∗(B,B,M#) ∈ (0,(N−1)/(2(M−1))) and M# ≥ (N +3)/2.

Additionally, note that for τ(R,R,M#) ∈ (0,1) and τ(B,B,M#) ∈ (0,1) to constitute a best re-
sponse for a given M#, the probability of being pivotal for i with si = R must equal the probabil-
ity of being pivotal for i with si = B. This implies that any equilibrium with truthful communi-
cation and responsive voting for both si = R and si = B take the form τ(R,R,M#) = τ(B,B,M#)
(i.e. τ(si,mi,M#) = τM(M#)).

Lastly, τ(R,R,M#)≤ 1 and τ(B,B,M#) = 1 and τ(R,R,M#)< 1 for some M# cannot constitute
a best response, since given τ(R,R,M#) < 1 and τ(B,B,M#) = 1, the probability that i’s vote
is pivotal is only greater than zero for M# < (N + 1)/2. However, when M# < (N + 1)/2,
then τ(R,R,M#) = 1 maximizes payoffs independent of other’s voting behavior. Therefore,
all equilibria with truthful communication and responsive voting take the form τ(R,R,M#) =
τ(B,B,M#) (Lemma 1), or τ(R,R,M#) = 1 and τ(B,B,M#)≤ 1 (Lemma 1’). �

Proof of Proposition 2: We provide a general proof of Proposition 2 by analyzing three separate
cases.

CASE 1: τ(si,mi,M#) = τM(M#): This case corresponds to the form of equilibria we focus on
in the main body of the text.

We prove the result by contradiction. Assume an equilibrium exists with truthful messaging in
the deliberation stage, and that all agents play strategy τM(M#) = τ∗(M#) in the voting stage.
Note that the formulation of the Lemma implies that given K, τ∗(M#)> 0 for M# = N (that is,
S′ ≤ N, otherwise the only equilibrium is the non-responsive equilibrium).

Let K̄ denote the difference in the posterior probabilities of both states conditional on (N+1)/2
signals for B.

K̄ = Pr
(

ω = B|S# = N+1
2

)
−Pr

(
ω = R|S# = N+1

2

)
That is, K̄ is the relative expected utility that i receives when the committee selects option B,
given (N +1)/2 signals for B. Additionally, take K′ = piv(0.5,N)K̄.
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The proof stems from the following two observations: (1) since K > K′ implies that S′ >
(N + 1)/2, when M# = (N + 1)/2, the unique best response is for all agents to vote for R
(τ∗(M#) = 1); (2) by Equation 1 in the proof of Lemma 1, τ∗(M#) is decreasing in M#.

Now, consider the expected payoff of an agent, i′, who has a signal of R, but who deviates to
mi′ = B. Also, assume that i′ plays strategy τ∗(M−1)—that is, conditional on S#, i′ continues
to play the same strategy as under truthful communication. This implies that i′’s expected
expressive payoff is unchanged conditional on S#, and i′’s expected payoffs change only due
to the change in the probability that X = B given S#. First, note that by (1), τ∗(M#) = 1 for
M# ≤ (N + 1)/2, and therefore Pr(X = B|S# ≤ (N − 1)/2,mi′ = B) = 0, which implies that
despite the deviation, B will never be chosen when R receives more signals. Second, by (2),
Pr(X = B|S# ≥ (N + 1)/2,mi′ = B) > Pr(X = B|S# ≥ (N + 1)/2,mi′ = R) for S# > S′− 1; i.e.
the probability that B is chosen when B receives the majority of signals is higher given i′’s
deviation.

Therefore, since i′’s expected utility is strictly higher given an increase in Pr(X = B|S# > N/2),
setting mi′ = B is a best response. (Note, however, that the strategy (σ(R) = σ(B) = 0,τ∗(M#−
1)) is not a best reply—given that other agents play the mixed strategy τ∗(S#−1), i′ has a best
reply of voting R for all M# (σ(R) = σ(B) = 0,τ(M#) = 1)).

This shows that for K >K′= piv(0.5,N)K̄, there is no equilibrium with truthful communication
where agents play τ∗(M#) in the voting stage.

CASE 2: τ(si,mi,M#) = τM(M#),(1− τM(M#))), τ(M#) = 1: Note that it is possible that equi-
libria with truthful communication feature voting behavior that, e.g., alternates between τ∗(M#),
(1− τ∗(M#)) and τ(M#) = 1 (non-responsive) for M# ∈ {(N +3)/2,(N +5)/2, ...,N}. In this
case, Pr(X = B|M#,τ(si,mi,M#)) is not necessarily weakly increasing in M#, which implies
that the proof provided for Case 1 does not apply, since i′ with si′ = R deviating to mi′ = B
could lower the probability that B is selected for some M#.

However, for large enough K, it will still be a best response for i with a signal of R to deviate
to mi = B. Take S′ defined as above, i.e.:

S′ =
{

N +1, if piv(0.5,N)[Pr(ω = B|S#)−Pr(ω = R|S#)]< K ∀ S#,
min{S# | piv(0.5,N)[Pr(ω = B|S#)−Pr(ω = R|S#)]≥ K}, else.

To see that a lower bound on K exists such that there are no equilibria with truthful communica-
tion and responsive voting for K larger than this bound, take K large enough so that S′ = N. By
Lemma 1, the only possible responsive equilibrium that features truthful communication and
uniform voting has τ∗(M#)< 1 iff M# = N. Therefore, given truthful communication, there is a
positive probability that the committee selects B only if S# = N. However, in this case, it is not
a best response for i′ with si′ = R to set mi′ = R, since a unilateral deviation to mi′ = B results
in a positive probability that the committee selects B when S# = N− 1. Since this argument
holds regardless of whether agents play τ∗(M#) or (1−τ∗(M#)) (given S′=N, agents must vote
responsively for M# = N for the equilibrium to be responsive) in the voting stage, this shows
that given K large enough so that S′ = N, no equilibria exist with truthful communication and
responsive voting.

CASE 3: MESSAGE-CONTINGENT VOTING (τ∗(R,R,M#) = 1,τ∗(B,B,M#)): Next we con-
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sider the case of message-contingent voting outlined in Lemma 1’. First, note that similar
to Case 2, there may exist two values of τ that constitute a best response for M# ≥ S

′′
(M#),

τ′(B,B,M#) ∈ (0,(N− 1)/(2(M− 1))) and τ′′(B,B,M#) ∈ ((N− 1)/(2(M− 1)),1). Also, by
the same argument as in Case 1, if K > [Pr(ω = B|S#)− Pr(ω = R|S#)] for S# = (N + 1)/2,
then there are no equilibria with message-contingent voting and τ∗(B,B,M#) = τ′(B,B,M#) for
M# ≥ S

′′
(M#), since agents with si = R would profit from a deviation to mi = B.

Additionally, equilibria where agents play τ′(B,B,M#) for some M#≥ S
′′
(M#), and τ′′(B,B,M#)

for other M# ≥ S
′′
(M#) are ruled out for K high enough by the proof of Case 2, since strategies

in the two cases are equivalent when S′ = N.

NOTE: N = 3: Lastly, we note that when N = 3 (the case we consider in our experiment), if
K > Pr(ω = B|S#)− Pr(ω = R|S#) for S# = 2, then by Cases 1-3, no symmetric equilibrium
exists with truthful communication and responsive voting. �

Proofs of Lemma 2 and Proposition 3: Both results follow from our generalized result, Theorem
2, which we proved above.

B Empirical Appendix

In line with Hypothesis 3, our hypothesis is that subjects’ beliefs are more responsive to co-
players’ messages under Unanimity. We test this hypothesis by estimating a simple structural
equation model of the decision making process.13 The equation system directly implements the
strategic game played by the subjects. First, a subject’s belief about the true state ω ∈ {R,B} is
a function of the own signal s ∈ {R,B} and the opponents’ messages m2,m3 ∈ {R,B},

Pr(ω = R|s,m2,m3) =
1

1+ exp{α1(Is=B−0.5)+α2(Im2=B + Im3=B−1)}
(2)

with belief parameters α1,α2. Here we use the indicators Is=B, Im2=B, Im3=B to indicate whether
the own signal (s) or the opponents’ messages (m2,m3) are equal to B (value 1) or not (value 0).

Second, a subject’s belief about the voting outcome X ∈ {R,B}, conditional on the own vote
v ∈ {R,B} and the number of B messages, is14

Pr(X = R|vi) =
1

1+ exp{β1 · Iv=B +β2|m1+m2+m3}
= 1−Pr(X = B|vi). (3)

Here, β1 captures the weight of the own vote, and β2|· captures the expectation about the op-
ponents’ votes as a function of the message profile. Specifically, β2|· is a vector of four values,
where β2|0 denotes the expectation in the case where there are zero B messages, and β2|1, β2|2,

13An arguably simpler approach would be to plainly ask subjects about their beliefs, but in the context of beliefs
underlying strategic decisions, the elicited beliefs have been found to be incompatible with the chosen actions
(Costa-Gomes and Weizsäcker, 2008). Even without such obstacles, robustly incentive-compatible elicitation of
beliefs, prior and after revelation of messages, is not simple either and may distract or appear obtrusive to subjects.

14Slightly abusing notation, we use m1 +m2 +m3 as shortcut for Im1=B + Im2=B + Im3=B.
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β2|3 concern the cases of one, two, or three B messages. In conjunction, these two beliefs define
the probability that the voting outcome X is equal to the true state ω,

Pr(X = ω|vi) = Pr(ω = R) ·Pr(X = R |v)+Pr(ω = B) ·Pr(X = B |v).

Finally, using Pc and K to denote the payoff from the voting outcome being correct (X = ω)
and the expressive payoff from voting R, respectively, voting for R has probability

Pr(v = R) =
1

1+ exp{−λ ·Pc · (Pr(X = ω|vi = R)−Pr(X = ω|vi = B))−λ ·K}
,

allowing for logistic errors (with precision parameter λ ≥ 0). Note that this model is fairly
general. Depending on how the belief parameters (α1,α2,β1,β2|·) relate to their empirical
counterparts, the model is compatible with (ir)rational expectations, overshooting in Bayesian
updating, cursed beliefs and level-k beliefs. The empirical counterparts (α̂1, α̂2, β̂1, β̂2|·) can be
estimated simply by logit regressions. The rational signal and message weights α̂1 and α̂2 are
estimated by regressing the true state of the world ω on the signal and messages, using Eq. (2),
and the rational outcome weights β̂1 and β̂2|· are estimated by regressing the probability that
the correct decision is made (X = ω) on the own vote and the message profile, using Eq. (3).

In our analysis, we allow for two forms of behavioral biases: (1) the belief weights α1,α2 are
merely proportional (jointly) to their rational expectation counterparts, which captures biases
due to overshooting (αi > α̂i) and conservative belief formation (αi < α̂i), and (2) the vote
weights β2|· are merely proportional to their empirical counterparts, which allows for biases due
to overestimating (βi > β̂i) and underestimating (βi < β̂i) the predictability of the co-players’
votes. In the extreme case, β2|·= 0, subjects believe their co-players are perfectly unpredictable
(usually dubbed level-1, see Stahl and Wilson, 1995). If 0 < β2|· < β̂2|·, subjects underestimate
the predictability of others as observed by Weizsäcker (2003), Goeree and Holt (2004) and
Eyster and Rabin (2005), and if β2|· = β̂2|·, subjects hold rational expectations of the mapping
from their co-players’ messages to votes. We report on two robustness checks invoking rational
expectations in either dimension below, but the results are very robust in general.

We find that subjects overshoot in belief formation, given signals and messages, and therefore
hold rather strong beliefs. To see this effect as clearly as possible, it is best to look at cases
where the co-players’ messages contradict the own signal. That is, we look at beliefs about
the true state ω after a private B signal and two R messages of co-players, and after a private
R signal and two B messages of co-players. Given the above notation, our Hypothesis 3 that
beliefs react more strongly to the co-players’ messages under Unanimity, since messages are
more truthful in this case, amounts to

PrMaj(ω = R|s = B,m2 = m3 = R)< PrUna(ω = R|s = B,m2 = m3 = R),
PrMaj(ω = R|s = R,m2 = m3 = B)> PrUna(ω = R|s = R,m2 = m3 = B).

Based on the estimates of the structural equation models, namely α1,α2 in conjunction with Eq.
(2), these beliefs can be computed straightforwardly. Since the beliefs are based on estimates
of α1,α2, we bootstrap their distributions to test our hypothesis (resampling at the subject
level to account for the panel character of the data, stratifying to acknowledge the treatment
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Table 4: Structural equation analysis of beliefs (ω = Red) as function of signals and messages

Empirical Baseline Rational 1 Rational 2

First halves of sessions
Beliefs after R signal and two B messages from others
PrMaj(ω = R|s = R,m2 = m3 = B)
PrUna(ω = R|s = R,m2 = m3 = B)

Beliefs after B signal and zero B messages from others
PrMaj(ω = R|s = B,m2 = m3 = R)
PrUna(ω = R|s = B,m2 = m3 = R)

Log-Likelihood

Robustness checks
Rational state beliefs
Rational voting beliefs

Second halves of sessions
Beliefs after R signal and two B messages from others
PrMaj(ω = R|s = R,m2 = m3 = B)
PrUna(ω = R|s = R,m2 = m3 = B)

Beliefs after B signal and zero B messages from others
PrMaj(ω = R|s = B,m2 = m3 = R)
PrUna(ω = R|s = B,m2 = m3 = R)

Log-Likelihood

Robustness checks
Rational state beliefs
Rational voting beliefs

Note: In the baseline model we allow for mistakes in Bayesian updating when forming state beliefs and voting
beliefs. That is, the respective belief parameters (α1,α2) and β2|· are allowed to be arbitrarily scaled vectors of
their rational expectation counterparts (α̂1, α̂2) and β̂2|· as estimated from logistic regressions. The robustness
checks enforce rational expectations by equating the respective belief parameters with their rational expectation
counterparts. The respective likelihoods are significantly worse than that of the baseline model (showing that
subjects do actually not hold rational expectations), but the main result that implicit beliefs differ between majority
and unanimity treatments is robust nonetheless. As before, significance of differences between majority and
unanimity estimates is indicated by plus and minus signs (++/−− at p < .05 and +/− at p < .1 using bootstrapped
p-values), next to the unanimity treatment estimates. All standard errors are bootstrapped.

A-15



structure). Parameters are estimated by maximum likelihood15 and both the standard errors of
the parameters as well as the p-values of the null hypotheses are also bootstrapped.

The results are reported in Table 4. First, looking at the empirically true probabilities, we
can see that in all cases, subjects should tend to follow the opponents’ messages when both
are the same despite contradicting the own signal. For example, in the second halves of the
sessions, after an R signal and two B messages from the opponents, the empirical probabilities
that the state is R are 43.5% and 37% under Majority and Unanimity, respectively. This shows
that messages should be given weight—and more so under Unanimity treatments than under
Majority, as the empirical probabilities deviate relatively more from 50-50 under Unanimity.
The remaining columns of Table 4 show that, in all cases, subjects’ beliefs indeed deviate
more from 50-50, in the direction of the messages, in unanimity treatments than in majority
treatments. The differences are significant, obtain robustly in both the first and the second
halves of the sessions, and the robustness checks assuming rational expectations forming either
state or outcome beliefs confirm the result. Based on this, we conclude that subjects anticipate
and account for the higher probability of truthful messages under Unanimity.

B.1 Finite Mixture Modeling to Estimate Strategy Weights

The voting strategies we assign to the honest/naive type follow from the theoretical predictions
of Lemma 1 and in all cases, we allow for noise. Specifically, the honest type will vote for R
given two or more messages/signals for R. With two messages/signals for B, the honest type
will vote for B with an intermediate probability, and with three messages/signals for B they will
vote for B with a high probability. The messaging and voting strategies of the strategic types
are then assigned relative to the honest type: The strategic Red type is more likely to message
and vote R, while the strategic Blue type is more likely to message and vote B. The free-rider
type, on the other hand, is more likely to message B and vote R.16 The detailed definitions
are provided in Table 5a. We allow for {πLie,πLow,πMedium,πHigh} to be free parameters in the
estimation to avoid an inadequate specification.

Finite mixture modeling is a general approach allowing for probabilistic assignment of subjects
to strategy classes, which resolves a number of concerns with deterministic assignments,17 but
is otherwise comparable to cluster analyses.18

15To maximize the likelihood, we first use the gradient-free NEWUOA approach (Powell, 2006), which is compara-
bly robust (Rios and Sahinidis, 2013), and secondly a Newton-Raphson algorithm to ensure convergence.

16While the relative comparisons follow from the theory, the exact division into the strategy classes was calibrated

using the aggregate voting strategies reported in Table 6 in the Appendix.
17Deterministic approaches that assign each subject to a strategy class based on some distance measure are sensitive

to the distant measure chosen, are ambivalent near the boundaries of each class, and do not reflect the degree of
(un)certainty about a subject’s classification. Furthermore, deterministic classification requires the distances to be
reliably measured. In our case, however, they would be based on only few observations per information set.

18In most behavioral cluster analyses, each data point (subject) is represented by vectors with few elements. In such
cases, we can plot the individual estimates and “mark” the cluster areas. This approach is inadequate here, as
each subject is characterized by choices in many different information sets (namely, fourteen) with comparably
few observations in each case. Loosely speaking, the finite mixture analysis determines a common denominator
across information sets with regards to strategies.
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We assume that ex-ante, a subject plays strategy k ∈K with probability ρk, and that each subject
sticks with the chosen strategy throughout the analyzed interactions. The statistical model is
fully described by the ex-ante strategy weights ρ = (ρ1,ρ2, . . .) and the strategy parameters
π = (πLie,πLow,πMed,πHigh) discussed above. Formally, given a subject pool S# and our set of
observations O= {os}s∈S, let P(os|π,k) denote the probability of the choices os made by subject
s ∈ S assuming s plays strategy of type k with parameters π. Then, the likelihood function

LL(ρ,π |O) = ∑
s∈S

log ∑
k∈K

ρk ·P(os|π,k)

is maximized over (ρ,π) to estimate the ex-ante strategy weights ρ we are interested in. The
strategy parameters π are not of direct interest for our research hypothesis, but allow us to test
whether the estimates align with our ex-ante predictions, which also serves as a robustness
check. Given the observed choices O, we can determine the posterior class assignment of each
subject s ∈ S simply by applying Bayes Rule.

This approach does not require us to commit to distance functions and expresses the degree of
(un)certainty as a function of behavior by implying probabilistic posterior beliefs. As usual,
we maximize the likelihood by the expectation-maximization (EM) algorithm (see e.g. Ar-
cidiacono and Jones, 2003), and in the maximization step we again first use the gradient-free
NEWUOA approach and secondly a Newton-Raphson algorithm to ensure convergence. Model
adequacy is measured using ICL-BIC (Biernacki et al., 2000), which penalizes both superflu-
ous model components and excessive parameterization. ICL-BIC has been shown to enable
reliable estimation of the number of components (in our case, strategy classes) in the popula-
tion (Fonseca and Cardoso, 2007). Finally, standard errors are bootstrapped by replacement
at the subject level to account for the panel character of the data, using stratified resampling
acknowledging the treatment structure.

Note that our results are robust to pooling the Majority treatments and Unanimity treatments,
respectively, and robust to focusing on either the first halves or second halves of each session, as
shown in the lower panel of Table 5b. Further, the strategic parameters satisfy πLow < πMed <
πHigh, showing that the subjects use the strategies as predicted, and the share of unclassified
(“noisy”) players is around or below 10%, showing that subjects use their respective strategies
consistently throughout the session. Finally, in our robustness checks reported in Table 7 (see
Appendix B.2), we find that none of the strategy classes are superfluous, although some weights
are small, in the sense that eliminating either class increases the ICL-BIC measure of model
adequacy. With these robustness checks in mind, we conclude as follows.

B.2 Additional Material and Robustness of the Experimental Results

Additional graphs and tables Figure 4 provides a composite screen-shot that displays all
queries and all pieces of information that were available to subjects at some point during the
experiment. Table 6 describes the relative frequency and number of votes for B across all
information sets in all four treatments.
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Table 5: Do subjects play more honest strategies in unanimity voting? Results of the mixture analysis

(a) Definition of the classes of strategies

Messages Voting
µ(A) µ(B) π(A,A,0) π(B,A,0) π(A,A,1) π(A,B,1) π(B,B,1) π(B,A,1) π(A,A,2) π(A,B,2) π(B,B,2) π(B,A,2) π(A,B,3) π(B,B,3)

Noise .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Honest 1 0 1 1 1 1 1 1 πMed 1 πMed πLow πMed πLow
StratRed 1 πLie 1 1 1 1 1 1 1 1 1 πMed 1 πMed
StratBlue 1−πLie 0 1 1 1 1 1 πMed πMed 1 πMed πLow πMed πLow
Freeride 1−πLie 0 1 1 1 1 1 πHigh πHigh 1 πHigh πMed πHigh πMed

Note: µ(s) is the probability of sending message R given the signal s ∈ {R,B}. π(s,m,M) is the probability of voting R as a function of one’s signal s, message m, and the number M# of B messages overall (i.e. in
aggregate over all players). The parameters (πLie,πLow,πMed,πHigh) allow adaptation to subjects’ behavior, with the theoretical ex-ante hypothesis πLow < πMed < πHigh.

(b) Strategy weights and parameters across treatments (bootstrapped standard errors in parentheses)

Strategy weights in population Strategy parameters
Noise Honest StratRed StratBlue FreeRide ε πLie πHigh πMed πLow ICL-BIC

All games per session
Majority 35 15 0.12

(0.05)
0.44
(0.11)

0.19
(0.07)

0
(0.01)

0.26
(0.09)

0.04
(0)

0.42
(0.11)

0.73
(0.06)

0.35
(0.04)

0.08
(0.03)

6368.79

Majority 40 10 0.07
(0.04)

0.45
(0.12)

0.25
(0.08)

0.03
(0.03)

0.2
(0.07)

Unanimity 35 15 0.07
(0.04)

0.78
(0.06)

++ 0.11
(0.05)

0.04
(0.03)

0
(0)

−−

Unanimity 40 10 0.04
(0.03)

0.75
(0.07)

++ 0.18
(0.06)

0.02
(0.03)

0
(0.02)

−−

Majority 0.09
(0.03)

0.44
(0.1)

0.22
(0.06)

0.01
(0.02)

0.23
(0.06)

0.04
(0)

0.41
(0.11)

0.72
(0.05)

0.35
(0.04)

0.08
(0.03)

6345.24

Unanimity 0.06
(0.03)

0.77
(0.05)

++ 0.15
(0.04)

0.03
(0.02)

0
(0.01)

−−

Robustness check 1: 1st halves per session
Majority 0.13

(0.04)
0.59
(0.11)

0.12
(0.06)

0.05
(0.04)

0.12
(0.08)

0.04
(0)

0.61
(0.13)

0.79
(0.13)

0.36
(0.04)

0.14
(0.05)

3304.43

Unanimity 0.1
(0.03)

0.78
(0.04)

++ 0.12
(0.03)

0
(0.01)

0
(0)

−−

Robustness check 2: 2nd halves per session
Majority 0.1

(0.03)
0.48
(0.15)

0.19
(0.06)

0.01
(0.02)

0.22
(0.11)

0.03
(0.01)

0.41
(0.2)

0.86
(0.06)

0.38
(0.09)

0.06
(0.05)

3009.04

Unanimity 0.07
(0.03)

0.71
(0.08)

++ 0.17
(0.06)

0.04
(0.02)

0
(0.02)

−−

Note: This table provides the statistical support for our observation that subjects use more honest/naive strategies in unanimity treatments and more free-riding strategies in majority treatments. The table reports
the weights of the five predicted strategies in the population, the estimated strategy parameters (πLie,πLow,πMed,πHigh), the bootstrapped standard errors, and the goodness-of-fit measures ICL-BIC. The upper panel
provides the estimates for the entire sessions, the lower panel provides robustness checks focusing on either first halves and second halves of the sessions. In the upper panel, we report estimates distinguishing either
all treatments or only majority and unanimity treatments. Plus and minus signs indicate significant differences (++ at p < .05 and + at p < .1 using bootstrapped p-values) of the strategy weights in the unanimity
treatments compared to weights in the respective majority treatments. The ICL-BICs show that the latter more parsimonious approach is statistically more adequate, but the main results are robust in either case. They
also hold robustly if we focus on either the first or the second halves of the sessions, as shown in the lower panel.
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Learning In this subsection we show that the qualitative results presented in above are ro-
bust to excluding the first 25 rounds of the experiment (learning). Figures 5 and 6 replicate
the Figures referred to when discussing Hypotheses1 and 2 for the restricted data set compris-
ing only the second halves of all sessions. The patterns are virtually indistinguishable. The
remaining statistical results relied upon in the discussion of Hypotheses 3 and 4 in the main
text distinguish first and second halves of sessions explicitly, thus establishing robustness to
learning explicitly.

Multiple voting rounds under Unanimity As we discuss in the main text, there is an asym-
metry in our operationalization of Majority and Unanimity. In particular, to replicate a unanim-
ity decision rule that requires a unanimous decision and allows multiple rounds of voting, we
allowed for up to three rounds of voting in the Unanimity treatment. Here we explore whether
the multiple rounds of voting had a direct impact on the level of information aggregation—in
particular, whether multiple rounds of voting contribute to the higher degree of information
aggregation observed under Unanimity. To address this question, we compare the level of in-
formation aggregation between groups that reached a unanimous decision in the first round of
voting and groups that required multiple rounds of voting to reach a unanimous decision or who
did not reach a unanimous decision after three rounds of voting.

If the multiple rounds of voting were instrumental in driving the higher degree of information
aggregation under Unanimity, then we would expect to see that groups that voted for multiple
rounds did a better job at aggregating information relative to groups that reached a unanimous
decision in the first round. However, as seen in Figure 7, this is not the case: the higher degree
of information aggregation observed under Unanimity is entirely driven by groups that reached
a unanimous decision in the first round of voting.

Finite mixture model: robustness checks Table 7 shows that eliminating components (strat-
egy classes) from the analysis leads to worse values of the information criterion ICL-BIC, sug-
gesting that no component should be eliminated.
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Figure 4: Translated screenshot

Note: This screenshot simultaneously displays all queries and all pieces of information that were available at some
point during the experiment. All items are in the positions they had been displayed, and they were displayed in
the following order.

1. Show urns and drawn ball (displayed for the entire game)
Shows the two jars (“Blue Urn” and “Red Urn”) and the ball drawn (“Your ball”). These items remain on the screen for the entire
game.

2. After five seconds, query for message (no time limit)
Now the box “Your Message” appears with the two balls underneath to choose from. Subjects submit the message by clicking “OK”,
there is no time limit. Once the message is submitted, the box disappears.

3. When all messages are submitted, they are displayed (displayed for the remainder of the game)
Now the box “Messages” on the left appears, displaying the messages of all three subjects. These items remain on the screen for the
rest of the game.

4. After five seconds, query for vote (no time limit)
Now the box “Your Vote” appears with the two options to choose from. Subjects submit their vote by clicking “OK”, there is no time
limit. Once the vote is submitted, the box disappears.

5. When all votes are submitted, they are displayed (displayed for the remainder of the game)
Now the box “Votes” on the left appears, displaying the votes of all three subjects. These items remain on the screen for the rest of the
game (in Majority or in Unanimity if decision unanimous or the third vote was taken) or disappear (in Unanimity otherwise, where
the voting stage is restarted).

6. After five seconds, the decision taken by the committee (“Majority Decision”), the urn originally chosen by Nature (“Actual Urn”)
and the payoff information is displayed (“Points”). The majority decision and numbers displayed here are entirely artificial. The
information remains on the screen for 10 seconds, after which a new game starts.
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Table 6: Proportion and number of votes for B

Treatment High Low
———————— ————————

M si/mi Majority Unanimity Majority Unanimity
0 red/red 0.02 (198) 0.00 (399) 0.02 (304) 0.00 (404)
0 blue/red 0.08 (24) 0.00 (63) 0.23 (53) 0.00 (43)

1 red/red 0.05 (464) 0.01 (487) 0.07 (523) 0.02 (511)
1 red/blue 0.09 (46) 0.00 (17) 0.14 (36) 0.12 (17)
1 blue/blue 0.08 (218) 0.02 (258) 0.08 (276) 0.01 (276)
1 blue/red 0.22 (64) 0.06 (63) 0.18 (101) 0.03 (75)

2 red/red 0.25 (228) 0.35 (240) 0.36 (237) 0.62 (192)
2 red/blue 0.06 (110) 0.19 (42) 0.32 (57) 0.47 (19)
2 blue/blue 0.40 (456) 0.41 (516) 0.56 (507) 0.63 (435)
2 blue/red 0.31 (55) 0.62 (39) 0.49 (45) 0.66 (35)

3 red/blue 0.16 (85) 0.54 (13) 0.45 (20) 0.83 (12)
3 blue/blue 0.69 (302) 0.93 (263) 0.69 (241) 0.96 (231)

Proportion of votes for B as a function of the aggregate message profile (M) and
the individual signal/message (number of observations are reported in parenthe-
ses). We use first-round votes for the unanimity treatments.
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Figure 5: Truthful reporting for rounds 26−50.
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Figure 6: Information aggregation for rounds 26−50.
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Figure 7: Information aggregation by signal profile, decomposed by whether the group reached
a decision in the first round (left figure), or voted for multiple rounds (right graph).
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Table 7: Robustness check on estimated strategy weights, testing whether all strategy classes
have significant weight. The test based on ICL-BIC (less is better), and we find that no strategy
class may be eliminated without increasing ICL-BIC. Format is equal to Table 5b

Strategy weights in population Strategy parameters
Noise Honest StratRed StratBlue FreeRide ε πLie πHigh πMed πLow ICL-BIC

All games per session
Majority 35 15 0.12 0.44 0.19 0 0.26 0.04 0.42 0.73 0.35 0.08 6368.79
Majority 40 10 0.07 0.45 0.25 0.03 0.2
Unanimity 35 15 0.07 0.78 0.11 0.04 0
Unanimity 40 10 0.04 0.75 0.18 0.02 0

Majority 35 15 0.12 0.2 0.18 0.51 0.05 0.14 0.62 0.23 0.04 6746.9
Majority 40 10 0.11 0.25 0.22 0.42
Unanimity 35 15 0.1 0.13 0.7 0.06
Unanimity 40 10 0.06 0.21 0.53 0.19

Majority 35 15 0.16 0.21 0.05 0.58 0.05 0.13 0.75 0.25 0.05 6770.39
Majority 40 10 0.18 0.25 0.05 0.53
Unanimity 35 15 0.13 0.8 0 0.07
Unanimity 40 10 0.09 0.52 0.11 0.27

Majority 35 15 0.12 0.44 0.19 0.26 0.04 0.42 0.72 0.35 0.08 6368.55
Majority 40 10 0.07 0.48 0.25 0.21
Unanimity 35 15 0.11 0.78 0.11 0
Unanimity 40 10 0.04 0.78 0.18 0

Majority 35 15 0.13 0.57 0.13 0.16 0.04 0.54 0.5 0.44 0.17 6468.46
Majority 40 10 0.07 0.62 0.11 0.2
Unanimity 35 15 0.07 0.81 0.08 0.04
Unanimity 40 10 0.04 0.79 0.15 0.02

Majority 35 15 0.13 0.22 0.64 0.05 0.13 0.35 0.19 0.25 6948.35
Majority 40 10 0.11 0.32 0.57
Unanimity 35 15 0.1 0.13 0.76
Unanimity 40 10 0.06 0.27 0.67

Majority 35 15 0.16 0.25 0.59 0.05 0.13 0.74 0.25 0.05 6766.47
Majority 40 10 0.18 0.3 0.53
Unanimity 35 15 0.13 0.8 0.07
Unanimity 40 10 0.09 0.64 0.27

Majority 35 15 0.23 0.66 0.11 0.05 0.67 0.68 0.43 0.15 6677.39
Majority 40 10 0.16 0.75 0.09
Unanimity 35 15 0.11 0.82 0.07
Unanimity 40 10 0.04 0.82 0.14

Majority 0.09 0.44 0.22 0.01 0.23 0.04 0.41 0.72 0.35 0.08 6345.24
Unanimity 0.06 0.77 0.15 0.03 0

Majority 0.11 0.23 0.19 0.47 0.05 0.14 0.62 0.22 0.03 6728.42
Unanimity 0.08 0.17 0.61 0.14

Majority 0.17 0.23 0.05 0.55 0.05 0.13 0.75 0.25 0.05 6758.34
Unanimity 0.11 0.66 0.06 0.17

Majority 0.09 0.46 0.22 0.23 0.04 0.42 0.72 0.35 0.08 6349.6
Unanimity 0.08 0.78 0.15 0

Majority 0.1 0.6 0.12 0.18 0.04 0.54 0.5 0.44 0.17 6448.95
Unanimity 0.06 0.8 0.12 0.03

Majority 0.12 0.27 0.61 0.05 0.13 0.35 0.19 0.25 6934.63
Unanimity 0.08 0.2 0.72

Majority 0.17 0.27 0.56 0.05 0.13 0.75 0.25 0.05 6754.68
Unanimity 0.11 0.72 0.17

Majority 0.19 0.71 0.1 0.05 0.67 0.67 0.43 0.15 6663.68
Unanimity 0.08 0.82 0.1
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