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ABSTRACT. In this paper I prove a deterministic approximation theorem for a
sequence of Markov decision processes with finitely many actions and general
state spaces as they appear frequently in economics, game theory and opera-
tions research. Using viscosity solution methods no a-priori differentiabililty
assumptions are imposed on the value function.

1. Introduction. In this paper I study the following standard sequential decision

problem. Consider a controlled Markov chain {X¢ },,cn, defined on some probability

space (£2,F,P), and taking values in R?. The evolution of this process is controlled

by an action process {A },en,, which is assumed to take values in a finite set A.

The controlled evolution of the state is assumed to follow the system equation
Xon =X, +efp (X5, A47%)  VnelNg (1)
X5 =z€XCR%

Assume that real time is a continuous variable, taking values in the set of non-

negative real numbers ¢ € R,. Fitting the discrete process {(X¢, A%)}, ey into
continuous time by defining cadlag processes

Xe(t) = X5, and A%(t) = A5 ne <t < (n+1l)e,n>0,

n?
we obtain a jump process, with deterministic periods between consecutive jumps of
length . Consider a decision maker, whose objective is to maximize his total sum of
stage payoffs over an infinite time horizon and discount factor A; := e~ "¢. Assume
that the decision maker is an expected utility maximizer so that his preferences
have a numerical representation as

o0
U(z,0) = EJ | Y (1= A)A\u(X5, A3)
n=0
Using the continuous-time interpolations, this preference relation can be equiva-
lently represented as

o { /0 T rertu(XE (), A ()t
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The mapping o is a (behavior) strategy for the decision maker, essentially describing
a probability distribution over actions at each decision node. Formally, it is a
collection of functions from the observation process of the decision maker to the set
of probability distributions over the available actions, denoted by A(A). Precise
definitions will be given in Section 2.1.

As a comparison problem, consider the deterministic optimal control problem

sup | e u(ya(ty ), ff))dt 2)
ae8 Jo
St Ga(t @) = blya(t,0), a(t), ys(0,0) = = (3)

where § is the set of measurable functions o : Ry — A(A), and b is a suitably
defined Lipschitz continuous and bounded vector field. In this paper we address the
question under which conditions solutions (i.e. value function and the strategies) of
the stochastic sequential decision model, with decisions made on the discrete time
grid {0, ¢, 2¢, . ..}, converge to solutions of the deterministic optimal control problem
described above. The motivation for studying this question are two-fold. The first
motivation is guided by practical considerations. There are some arguments in favor
of using deterministic continuous optimal control problems over the stochastic dis-
crete decision processes. Solving the stochastic decision problem numerically is often
a computationally very intensive task, due to the “curse of dimensionality” of dy-
namic programming.' The deterministic optimal control problem is often amenable
to efficient numerical methods which seem to perform better than algorithms based
on dynamic programming (see [11] for illustrations). Second, in some situations,
the continuous deterministic formulation allows for an analytic treatment of the
decision problem, using either dynamic programming methods, or the Pontryagin
maximum principle (see [27, 23, 24] for fruitful applications of this idea). Hence, if
one has the theoretical justification to replace the stochastic decision problem by a
deterministic one, there are some good reasons to do that. My second motivation
for investigating this question is in establishing convergence results for dynamic
games in discrete time to dynamic games in continuous time. The present paper is
therefore the basis for a model in which the limit dynamic game is characterized by
a deterministic ordinary differential equation (i.e. a differential game).

1.1. Related literature. Related convergence and approximation questions are
at the core of optimal control theory. Indeed, the present study is heavily influ-
enced by the Markov chain method developed by [20]. This is a powerful numerical
approximation tool to obtain feedback controls in stochastic and deterministic op-
timal control problems. Similar approaches can be found in [5, 13, 9] and [2]. The
difference between these papers and the present one is the nature of the question
I am addressing. While the above mentioned literature is interested to construct a
numerical approximation scheme in order to approximate a given optimal control
problem, I instead ask the question, given a discrete controlled Markov chain model,
what is the limit as the discretization becomes arbitrarily fine?

While writing this paper I have learned from the paper by [11]. They establish a
limit result for a finite-horizon Markov decision process converging to a deterministic
optimal control problem. This paper differs from [11] in the problem formulation
as well as in the proof techniques. First I study infinite horizon problems with

INote that for numerical implementation of the decision problem one needs to discretize the
state space somehow. Usually at this stage the curse of dimensionality kicks in.
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discounting. Second, my proof techniques are based on a combination of weak
convergence arguments and viscosity solution techniques, whereas [11] rely on ideas
from stochastic approximation theory. Third, the paper by [11] studies a class
of optimization problems where the controlled dynamics depends on the empirical
measure of the behavior of N small sub-entities. This number N is used as the
mesh-size, and it is shown that as the number of entities grows to infinity, the
family of discrete-time problems converges to a “mean-field” limit model, which
is characterized by a deterministic differential equation. This deterministic limit
dynamics can be interpreted as the mean-field dynamic, describing the evolution of
the aggregate behavior of the population.?

In game theory there is a burgeoning literature on continuous-time limits of
discrete-time games. [6] and [12] study various versions of zero-sum repeated games
with incomplete information in the spirit of [1]. Using PDE techniques, [6] prove
the existence of a limit value as the frequency of play increases. A similar result,
in a different model setting, is reported in [12]. [21] performs a limit analysis for
stochastic games with parameterized transition probabilities. Again, results for
the convergence of the values for the family of discrete-time games are obtained
under various assumptions on the problem data. All these studies have in common
that only the convergence of the value is investigated. In this paper I do not
only demonstrate the convergence of the value of the Markov decision process,
but also prove the convergence of the decision maker’s strategy. I belief that this
is important, because it sheds light on conceptual problems we are facing in any
convergence analysis: Usually the space of of discrete-time strategies is not weakly
compact, and thus some compactification method has to be used when passing to
the continuous-time limit [29, 7]. Once this is done, the limit objects are usually
not interpretable as strategies in the original sense, but rather as measure-valued
processes, also called relazed controls (see [28]). Relaxed controls have no equivalent
in continuous-time games, though can be interpreted as a version of a correlated
strategy ([22]). We show in this note that this problem is avoidable in single-player
decision problems, by interpreting the limit objects as open-loop controls.

1.2. Examples.

1.2.1. Dynamic pricing policy of a monopoly. Consider an infinitely lived monopoly,
who sets prices a € A = {1,2,...,m}. The monopolist can announce prices at the
periods {0,¢,2¢,...}. It faces a stochastic market demand, following a Markovian
dynamics {X¢},en, with sample paths given by (1). The vector field f&(z,a)
capture the random changes in market demand, given the current demand is = and
the quoted price is a € A. The probability measures pg(-|x) define the law of the
random changes in demand, given the current demand is x and the monopolist
announces a price a. The monopolist has a flow profit function u(z,a). A strategy
for the monopolist is to design an optimal pricing strategy {0, }°2, where oy, is a
function of the demand history to probability distributions over prices. Hence, the
monopolists’ problem is to maximize

Ulr,0) = BY | S(1— A)ATu(XE, A7)

n=0

2This model setting is typical in stochastic dynamics consisting of a large number of identical
and weakly interacting random processes (“particles”).
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where z € R is the initially given demand, assumed to be known to the monopolist.
As € — 0 the monopolist is able to post prices in arbitrary short time spans, and
thus can react arbitrarily fast to the random market demand. If the market is suffi-
ciently stable where random fluctuations over very small time spans are negligible,
a deterministic approximation to this model seems to the sensible.

1.2.2. Optimal stopping. A firm has to decide when to exit an industry. The state
of the market is modeled by a discrete-time Markov chain {X¢},en, which lives
on R, . For concreteness think of X: as the market price in period n. Real time ¢
takes values in the set of non-negative reals R} and the firm receives information
on the prevailing market price only at discrete points in time contained in the grid
{0,¢,2¢,...}. The firm is small, and therefore cannot influence the evolution of the
price dynamics. However, it has a model for the time series of prices, which is the
AR(1) process given by eq. (1).

In each period the firm can decide whether to stay or exit the market. This is
modeled by a binary action set A = {0, 1}, where action 0 means to exit the market
and 1 means to stay in the market. In each period in which the firm stays in the
market it has to pay a random fee —r(XZ) < 0, and the state evolves according
to an uncontrolled Markov chain with transition function ¢ on a set of possible
prices KX C R,. If the firm decides to exit the market in period N € N it gets a
terminal reward g(X75;) and the evolution of prices stops (or the firm does simply not
monitor the price evolution anymore). The function g(+) is non-negative (otherwise
the firm would want to exit immediately) and bounded. This problem is contained
in our model setup by specifying the following data. The transition dynamics are
ps(-|z) = do and pi(-|z) = ¢°(:|zr) € M] (R), where ¢°(-|z) is a given probability
law modeling the uncontrolled evolution of the price time series. The utility rate

function is given by
| —r(zx) fa=1,
(@, a) = { glz) ifa=0.
The objective function of the decision maker is

o0

D (1= A)Alu(X;, AS)

n=0

Us(z,0) =EJ

where o is a measurable function mapping histories of the state process into proba-
bility distributions over actions (i.e. a strategy). Now suppose that the information
about current prices appears in periods of length . In real time, the price time
series evolves therefore according to the step process X ¢, and the decision whether
to exit the market or stay in the market can be made at all time points which
are multiples of the step size £. In the limit as € approaches 0 the firm monitors
the price evolution with more and more accuracy, and can also react to the price
dynamics at virtually any point in real time. The results reported in this paper
investigate such a scenario where in the limit as € — 0 the limit price dynamics can
be modeled by a deterministic differential equation.

2. Problem formulation.

2.1. The discrete-time problem. Let {(X¢, AS)}nen, be a stochastic process
taking values in the set R? x A, whose sample paths satisfy the dynamical systems
equation (1). Each A% is an A-valued random variable, adapted to the filtration
Fe =0 (X§,...,XE), and controlling the evolution of the state process. The law of
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the random variables A% for n =0, 1,2, ... are determined by a (behavior) strategy.
A strategy is a collection of functions o = {0, }nen,, where each o, () is a probability
distribution over the finite set of actions A := {1,2,...,m}, adapted to the sigma-
algebra J¢.° A strategy is Markov if, for every n, we can express the behavior
strategy o, in terms of a single function o : R — A(A), so that

onlalze,...,zn) = alalz,) VYn>0,a€ A. (4)

Markov strategies are of fundamental importance in Markov decision processes,
as we will see in due course.* {fS(z,a)}nen is a sequence of i.i.d random vari-
ables with common law 1Z(-|z) on RY. The collection of probability distributions
ps(-|z), ..., 15, (-|z), defined on the Borel sets of R%, are the control measures of
the Markov decision process.Let 2 = (R? x A)No denote the sample path space of
the controlled Markov chain, and let & denote the o-algebra generated by the finite
cylinder sets. By the Ionescu-Tulcea Theorem (see e.g. [3]), each strategy o defines
a unique probability measure PZ on (£, F) with the characteristics

PJ(X5 eT) =6,(T),
Pl(X;  €eT|X; =2,A;, =a) = Q°(T|z,a),
PJ(A =alX§,..., X)) =0(al X5, ..., X})s

where T' is Borel measurable subset of R?, and

Q*(Plz,a) = pg <i(r - JC):L“> Y(z,a) € RY x A.

Under this (canonical) construction of the controlled Markov chain we think of the
random variables X and A¢ as the coordinate processes X&(w) = z,, and A% (w) =
ap, for every w = (29, a0,...,2n,an,...) € Q.Given a strategy o let EJ denote
expectations with respect to the probability measure PJ. The objective of the
decision maker is to maximize his normalized expected infinite horizon discounted
utility

oo

S (1= A)ATu(XE, AZ)

n=0

U¢(z,0) = EJ

x

The discount factor per unit time A. is defined as A, = e~ "¢. r > 0 is the discount
rate. The factor (1—\.) provides the correct normalization of the stream of utilities.
The maximized utility of the decision maker, or the value function, is defined as

VE(z) = sup U(z, 0), (5)

where the supremum is taken over all strategies available to the decision maker. A
standard result in Markov decision processes is that the decision maker does not
gain by using more complicated strategies than Markov strategies. Indeed, for every
fixed € > 0, it is well known (see e.g. [15]) that the decision maker can choose a
stationary Markov strategy o : R? — A(A) which solves the decision problem, i.e.

Ve(z) = Us(x,0°) Yz e R
3Technically speaking, each o, is a stochastic kernel on A given (R4)*+1. See [3] for the precise

measure-theoretic definition of stochastic kernels.
4In the literature on stochastic games such strategies are often referred to as stationary.
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2.1.1. Standing hypothesis. This section provides a collection of all the technical
assumptions we impose on the problem data. The controlled stochastic dynamics
defining the optimization problem in discrete time is given by the random walk
model
{ w1 = X5 tefnn(X5,47) Ve N,
Xs=x€XCR?,

where X is a given compact subset of possible initial conditions. We start with
a uniform tightness condition on the distributions of the random vector fields

{fn(z,a) b nen

Assumption 1. The control measures us(-|x), ..., us,(-|x) are supported on a com-
mon compact subset X C R? for each x € R?.

This assumption implies that the vector fields b°(z,a) are all contained in the
closed convex hull of the compact set XK.

The next assumption is a continuity assumption on the drift of the state process
{XE }ren,, defined as the conditional mean increment of the process of the controlled
random walk. We denote the drift b° : R? x A — R by

1
F(a0) o= B2 | L (Xis = X0) | Xi =2t =a = [ sii@slo). (@

Assumption 2. The function b° : R* x A — R is Lipschitz continuous and
converges to a Lipschitz continuous function b : R4 x A — R? locally uniformly on
compact sets.

Since the drift b° is contained in the closed convex hull of the compact set XK,
Assumption 2 implies that the limit drift b takes also values in this set. Hence,
the controlled vector field of the limit dynamics (3) is uniformly bounded by some
constant M, > 0:

sup ||b(z,a)|| < My V(z,a) € R? x A, (7)
zERC
and Lipschitz continuous for every control parameter a € A.
Now we impose some restriction on the utility flow function of the decision maker.

Assumption 3. The utility flow function u : R x A — R is uniformly bounded
and Hélder continuous for each action a € A:

sup |u(z,a)] < M, Va€A, and (8)
z€R4
lu(z,a) —u(y,a)| < My||lz —y||” Vo,yeR¥acA 9)

for some constants M, > 0 and ~ € [0,1].

The final assumption we make concerns the scaling relationship between the
variance of the increments of the state process and the step size €. This assumption
is essential in making the deterministic approximation result work, as it says that in
the limit of small step sizes, sample paths of the state process look like solutions of
an ordinary differential equation with drift b. This will be made precise in Section
5, where the technical details are provided.

Assumption 4. The covariance matriz of the increments of the state process
{XE}nen, satisfies the scaling relationship

Varg (X5, — XE|XE =2, A5 = a] <M, (10)

for every (z,a) € RY x A, for some uniform constant M, > 0.
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2.2. The limit problem. The limit problem is a deterministic optimal control
problem where the decision maker wants to maximize his total discounted utility
over an infinite time horizon. To formulate the limit problem, recall that A(A)
denotes the set of probability distributions (mixed actions) over the set A. As
usual, extend the utility flow function to the domain R? x A(A) linearly, and write
(with the usual abuse of notation)

u(z, @) == Z u(z,a)a(a).
acA
Similarly, extend the drift b to R? x A(A) by b(z,a) := 3,4 b(z,a)a(a). The
value function of the optimal control problem is defined as
v(z) :=supU(z, a). (00)
a€cs
The functional U(x, «r), defined as

U(z,a) := /000 re”"u(y.(t, @), a(t))dt,

is the payoff of the decision maker under the deterministic strategy a € §. Strategies
induce the state dynamics

Uz (t, @) = b(y=(t, ), a(t)), y.(0,a) = x. (11)
Existence and uniqueness to solutions of the differential equation (11) is guaranteed
by Assumption 2. The set of strategies of the decision maker is the set of measurable
functions a : Ry — A(A),

S:={a:R;y — A(A)|a(-) measurable}.

Note that these functions are defined without any reference to the current state
and hence are open-loop controls. Therefore, the set of admissible strategies in the
limit problem, has no a-priori connection to the set of discrete-time strategies, as
these have been defined as processes adapted to the filtration generated by the state
process X¢. Nevertheless, the convergence analysis in the forthcoming sections, will
establish an interesting connection between these two strategy sets.

The following technical lemma establishes that the value function of the deter-
ministic optimal control problem (OC) is an element of the space of continuous
bounded functions v € C,(R? : R).

Lemma 2.1. Under Assumptions 2, 1 and 3 the value function v : R? — R satisfies
lv(z)] < M, vz € RY, (12)
and it is Holder continuous with coefficient v € (0, min{ 3, 1}).

Proof. The proof of this Lemma is based upon standard arguments, which can be
found in [2]. The uniform boundedness of the value function is a trivial consequence
of the uniform boundedness of the utility flow function u, stated in Assumption 3.
Indeed, for any strategy a € 8, we have

U(z,a) = / re” " u(y,(t, o), a(t))dt < Mur/ e "tdt = M,.
0 0

For the second statement, pick two points 21, 25 € R? and fix a strategy a € 8 such
that

v(xy) — 6 < U(x1, ).
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Such a strategy exists by definition of the supremum. Now v(xg) > U(xs, a), and
w.l.o.g we assume that v(z1) > v(x2). Then

[v(z1) — v(z2)| < |U(21,0) +6 = Uz, a)

=1 [ e utn (00, 0(0) = (8., el + .

By eq. (9) and standard estimates on solutions to ordinary differential equations,
we see that

[u(Ya, (£, @), (b)) = w(y, (t; @), ()] < Mu||ya, (¢, (t)) = Ya, (8 (1))
< My||lzy — zo|[Y e,

Using this estimate in the previous display shows that
o0
[o(x1) = v(x2)| < Myl — a2 / el + 26,
0

To ensure that the integral on the right-hand side of this estimate converges, we
consider three cases. If r > M, then the condition v < r/M, is sufficient for
convergence. In particular v = 1 can be chosen, which shows that the value function
is Lipschitz in this case. If r = M} any choice v € (0,1) can be made. Finally if
r < M, then we need to pick 0 < v < r/M,. This completes the proof the
Lemma. O

The dynamic programming approach to deterministic optimal control theory
allows us to characterize the value function as a solution to a partial differential
equation of the first-order, known as the Hamilton-Jacobi-Bellman equation. The
Hamiltonian associated to the optimal control problem (OC) is given by

H(xz,p) = Iglea;l({@, b(x,a)) + ru(z,a)}.

Note that here we have already used the fact that the maximum value of the Hamil-
tonian expression will be attained at a pure action. It is well-known that, under
the technical assumptions made in this paper, the value function v is the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation

rv(z) — H(xz, Dv(z)) =0 Vz e R (HIB)

See [2], chapters IT and III. Since the Hamiltonian maximization condition can be
formulated to optimize over elements in the finite action set A, it follows that

o0
v(z) = sup / re " u(y, (t, o), a(t))dt
ae8# J0
where 8# C 8 is the space of measurable A-valued open-loop strategies. In order to
be able to connect the discrete time control problem with the continuous one, we
will have to restrict the class of strategies even further. In particular, we exhibit
controls which may only be J-optimal (for arbitrary tolerance bound §), but be
at least piecewise constant.” This offers are large enough class of continuous-time
strategies which can easily be adapted to the discrete-time problem. To construct
piecewise constant suboptimal strategies we replace the optimal control problem
by a deterministic dynamic programming problem, which can be interpreted as the

5Note that if o € 8# is piecewise continuous it must be piecewise constant on the intervals of
continuity.
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“expected deterministic” version (as in [26]) of the Markov decision process we are
studying.® For each & > 0 let

8# := {a € 8|a(-) is piecewise constant on [ne, (n + 1)e),n € Ng}. (13)

For each strategy a € 8% define a controlled trajectory recursively on the time grid
{0,¢,2¢,...} by

n—1
yo(ne,a) =z +e Z by, (ke, o), a(ke)),
k=0
Yz(0,a) = 2.

Interpolate the state trajectory by setting y°(t, ) = y°(ne, ) for each t € [ne, (n+
1)e),n € Ny. In terms of this continuous time interpolation it is easily seen, recalling
the identity A\. = e™ "¢, that

oo

Uz, a) = Y (1= M)A u(yf(ne, o), a(ne))

n=0
=r /OOO e—rtu(yi(ty a),a(t))dt < v(z)

where the last inequality follows from the maximality of the value function. This
holds for every piecewise constant strategy o € 87.7 Let

v*(z) := sup U(z,a), (0C:)

aeSf

and let us put to record that, for each € > 0, we have v* < v pointwise. We now
establish some simple, but useful, general properties of the value function v=.

Lemma 2.2. The dynamic programming problem (OC.) has a solution, and the
value function v¢ is unique. Moreover, it is uniformly bounded by the constant M,

and Hélder continuous with exponent v € (0, min{ 57, 1})

Proof. The proof of this Lemma is fairly standard, and so we only provide a sketch
of the proof (for all details see e.g. [2], Section VI.4). First we show existence
and uniqueness of solutions to (OC.). Define the operator T, acting on bounded
functions v : R? = R, by
T.v(x) := mea%{(l = A)u(z,a) + Av(z + eb(x,a))}
a

Since A: € (0,1) for each ¢ > 0, it is easy to see that T. defines a contraction
mapping on the space of bounded functions on R?. With the supremum norm this
is a Banach space, and the Banach fixed point theorem states that there exists
a unique function v¢ such that T.v® = v° pointwise. Standard arguments then
show that v is the value function of the restricted problem (OC.). The uniform
boundedness and Hélder-continuity of the function v¢ follow directly from the proof
of Lemma 2.1. O

6Similar ideas appeared already in [10].
7A decision maker cannot obtain a higher utility by constraining himself to the smaller set of
strategies 8:5#.
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Next, we construct a deterministic Markov strategy a® : R* — A which solves
the problem (OC.). For each 2 € R? let

a®(x) := max {a € A|v°(z) = (1 — A)u(z, a) + v (x + eb(z,a))} . (14)
Based on this Markov strategy, we define a piecewise constant strategy in continuous
time by setting

n—1

yo(t) = yi(ne) =z +e ) blys(ke), o (y5(ke))) Vi € [ne, (n+1)),n >0,
k=0

and, for fixed initial condition = € R?,
as(t) == a*(y;(t)) Vi =0. (15)
It follows ([2], Theorem V1.4.6) that

oo
Vo) = [ re (i, 0% (0)dt = Ul 00)
0
It remains to check the consistency of the approximation procedure as ¢ — 0F.

Lemma 2.3. v° — v ase — 0", where v is the unique viscosity solution to (HJB).

Proof. For each € > 0 the value function v is uniformly bounded and Holder contin-
uous. By the Arzela-Ascoli theorem we can assume that there exists a subsequence
{v%}en such that £; — 0T as j — oo, and along which v% — v locally uniformly
on R?. To complete the proof, we will show that v is a viscosity solution of (HJB).
This is done by showing that v is simultaneously a viscosity sub and supersolution
of (HJB). Let ¢ € C'(R? : R) be a given map. The function v € Cy(R? : R) is a
viscosity subsolution of (HJB) if, whenever v — ¢ has a local maximum at a point
x, then

rv(z) — H(z,Vé(z)) <0. (16)

v € Cy(R? : R) is a viscosity supersolution of (HJB) if, whenever v — ¢ has a local
minimum at a point x, then

rv(x) — H(z,Vo(z)) > 0. (17)

We now come to the verification. Take ¢ € C*(R? : R) and 2y € R a local maximum
point for v — ¢. Then there exists a closed ball B centered at xg such that

(v =¢)(wo) = (v—9¢)(x) VaeB. (18)

For each j € N pick x% € argmax,ecp (v — ¢)(z). By the continuity of the value
function v/ and the local uniform convergence to v it follows that xé — xg. Then,
for j sufficiently large, the boundedness of the drift eq. (7) implies that 336 +
e7b(x},a) € B for all a € A. Therefore, eq. (18) implies that

v (x(]) + Ejb($%7 a)) — v (xjo) < ¢($6 + Ejb(xg, a)) — (b(x%) Va € A. (19)

The discrete dynamic programming equation corresponding to problem (OC.) states
that

0 = ma { (1= Ao Jula ) + Aoy i + (. ) — 0% (o) }
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for every j € N. This, together with eq. (19), implies that
0 = max {(1 )@, @) — o5 (@ + 9b(xh, a))] + v (2] + 9b(x), @) — v (xg)}
< 0= 0wl a) = 0% (2 + b, )] + 6 (i + Pb( 0) — 6% () }
Since ¢ € €1(R? : R), the mean-value theorem implies that
65 () + £7b(wd, 0)) — 6% (a]) = £ (V(ah, + O7eTb(af, ), bl 0)
for every j € N and some 67 € [0,1]. Hence,
0 < max {(1 ) [u@d, @) — v (@) + 7b(ad, a))] + & (Vo (z) + 07 b(ad, ), b(ad, a)>}

Dividing by ¢/ and observing that
1 1 el
g(l_)\aj):g(l—e 6)—>7'

as j — oo, we conclude that

0 < —rv(zg) + H(z, Vd(xg)) < rv(zo) — H(zo, V(o)) < 0.

This shows that v satisfies the viscosity subsolution condition (16). The proof that
v also satisfies the viscosity supersolution condition (17) is done, mutatis mutandis,
in the same way, and is omitted. O

Proposition 1. The sequence of strategies {oﬁ}ge(o,l) 1S @ maximizing sequence:
U(z,a®) = sup U(z,a) =v(x).
aES#

as e — 0.

Proof. For each € > 0 we know that v°(z) = U(x,a®). By the arguments of the
previous Lemma, the value function v® converges locally uniformly to the viscosity
solution v. By uniqueness of solutions it follows that v is the value function of the
optimal control problem (OC). O

This proposition shows that the strategies a®, obtained from the approximation
procedure (15), guarantee the decision maker a suboptimal payoff which approxi-
mates the maximal payoff when ¢ is sufficiently small. In particular, for every § > 0
there exists a €5 > 0 such that

U(z,a®) >v(x)—§ Ve e (0,e5).
A related result has been obtained by [11] in a different model setting.
3. The main result. Having described the Markov decision process and its limit
problem in detail, we come now to the main result of this paper.
Theorem 3.1. Under assumptions 2-4 we have V¢ — v as € — 0.

The main steps of the proof are as follows. First we define continuous-time
interpolations of the controlled Markov chain and the action process which will
provide the approximation of the controlled pairs for the limit problem. Consider
the step-functions

Xe(t) = X5, A(t) = A5Vt € [ne, (n+1)e),n € Ny. (20)

X< is a random element of the space of right-continuous functions with left limits,
denoted by D(R, : RY), and A° is a random element of D(Ry : A). Both these
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spaces are complete separable metric spaces, when endowed with the Skorokhod
metric (see e.g. [4]). In terms of these step functions, the utility to the decision
maker under the strategy o is given by

Us(z,0) = ES [ /0 b re”"tu(XE(t), Aa(t))dt}

o0
=E7 [Z(l - )\E)A?U(XE(nE),AE(nE))l .
n=0

In Section 5.1 we show that the sequence of interpolated processes {(X¢(t), A(t)), ¢
> 0} are tight in their respective function spaces. By Prohorov’s theorem this
guarantees that every sequence has a convergent subsequence. Using a suitable
representation of the action process in terms of mixed actions (made precise in
section 5), this relative compactness result allows me to prove that there exists a
well defined limit process (X,v), where X is a stochastic process taking values in
the space of continuous functions G(R? : R) and v is a stochastic process taking
values in 8.8 The two are coupled by the stochastic integral equation

t
X(t)=a+ / b(X(s),v(s))ds. (21)
0
For every element of the probability space variable, the pair (X (w), v(w)) defines an
admissible control pair for the deterministic optimal control problem (OC). Conse-
quently, the strategy v(w) is an element of the set 8, and therefore cannot give the
decision maker a larger utility as he could obtain by solving the deterministic prob-
lem directly. This forms the basis for the proof that limsup,_,, V¢(x) < v(x). To
show equality of the value functions, we need to show that also liminf. o V¢(z) >
v(x). This will be shown by adapting the deterministic piecewise constant strategy
af constructed in eq. (15), and using this strategy as a strategy for the Markov
decision process. The details of all these arguments are provided in Section 5.

4. Conclusion. We have focused in this paper on a standard stochastic optimal
control problem, and studied the convergence of the value to the value of a related
deterministic continuous-time problem. The key assumption which allowed us to
prove this deterministic limit result is, of course, the “asymptotically vanishing”
variance of the increments of the state process. Without this assumption a diffusion
limit should be expected. Second, we have focused in this paper on the theoretically
important case in which the decision maker has only finitely many actions among
which he can choose. It should be not too difficult to adapt the arguments to
general action spaces, imposing eventually additional technical assumptions on the
problem data. A further interesting extension of the present analysis is to remove the
boundedness assumption on the stage-utility function w. Allowing for unbounded
utility functions is potentially important in applications to queuing networks and
telecommunication networks. For an interesting study in the (more general) setting
of continuous-time Markov games, see [14].

A more challenging question, and one which actually motivated me to look at this
problem, is to extend the current result to stochastic games with imperfect public
monitoring. In this extended setting the state process {X¢ },cn, is interpreted as

8In the control-theoretic literature this relaxation procedure is standard since the classical
works of [29]. See section 5.1 for the precise definition of the relaxed representation of the action
process.
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the public signal process the players can observe, and public strategies are adapted
processes with respect to the filtration generated by this process. The deterministic
limit case is then only one of many scenarios one could study, and in fact might
not be the most interesting one. A challenging problem is to prove a limit theorem
where the limit signal process evolves according to a jump diffusion process. In
the setting of repeated games with imperfect public monitoring where the limit
dynamics is a continuous diffusion process (such as in [25]), we refer the reader to
[28]. The analysis found there generalizes to stochastic games with imperfect public
monitoring as in [16]. An open important question is to generalize the present study
to jump-diffusions, as these models gain much importance in contract theory and
mathematical finance. This is left for future research.

5. Proofs. Let {(X¢, AS)}nen, be the data of the Markov decision process. For
each £ > 0 the law of the action process is described by a feedback strategy o€,
being a stochastic kernel on A given R?. In the following, we assume that the
initial condition of the state process is a given point € X C R%. The pair process
{(X2, A%) }nen, induces the law PZ" = P2 on (Q, ), where Q := (R? x A)No, and
F denotes the sigma-algebra generated by the finite cylinder sets. The expectation
operator with respect to this measure is denoted as ES. Our proof method is based
on weak convergence arguments. Recall that a sequence of probability measures
{P*®}c>0 converges weakly to a limit measure P if

tim [ @)dPw) = [ F@)P)

e—=0

for all bounded continuous random variables f : @ — R. We will use this notion
of convergence to speak about limits of suitably interpolated versions of the data
{(XE, A5 }nen,- Once we have settled the convergence issue, we will be able to
determine the limit of the family of value functions {V*}.¢(g,1).

5.1. Convergence of interpolated processes. By definition, we have

n—1

Xow)=z+ey  fin(Xiw), AL (w)).

k=0
Denote by Z;, = fr1(X},, A5) the random (normalized) increment of the state
process in stage n of the algorithm, and Z¢(t) = Zg oy for t € [ne, (n + 1)e) its
corresponding step process. By construction, the interpolated process Z° is pre-
dictable with respect to the filtration {G¢}y>0, where G := (X (s), A%(s); s < t).
Using the step processes X< and A introduced in eq. (20), we can write the above
recursive relation as an integral equation

X‘%t,w)zx—!—/ Z(s,w)ds Vt € [ne, (n+1)e),n > 0.
0

Introducing the random variable
My = e (Z5y — V(X5 A7)
we obtain, for ne <t < (n + 1)e, the representation
ne n—1
Xe(t,w) ==+ / b (X% (s,w), A%(s,w))ds + > Mg (w).
0 k=0
Given the definition of the function b%, the following Lemma is very simple.
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Lemma 5.1. The process {>_;_o Mg }nen, is a martingale with respect to the fil-
tration G5, = o (X§, A§, ..., X5, AS).

It follows that {|| >, _, M ||*}nen, is a submartingale with respect to G¢. This
translates in a straightforward way to the continuous-time submartingale ¢
||Me(t)||?, where

ne
NEE(t) 1= / (Z5(s) — b (X=(s), A(s))ds Vi € [ne, (n + 1)e).
0
An application of the submartingale inequality ([18], Theorem 3.8) gives the bound

N 1 N
P2 | s, NP 2 A < pBEITECOP
0<t<T A
for every A > 0 and T' < oo. Using assumptions 4 and 1, the expectation on the
right-hand side of this inequality is o(1). Therefore,
lim Py [ up |[M=(8)[]* > )\] =0 (22)
e—0 0<t<T
for every strategy o and initial state x € X.

The action process {A°(t,w),t > 0} is, for each w € , a deterministic right-
continuous step function taking values in the discrete set A. Given its discrete
nature we cannot talk about function convergence in an ordinary sense, because of
chattering. To speak about convergence of this process we interpret the pure action
A%(t) as a behavior strategy taking values in the simplex A(A). To achieve this, we
define the mixed action process by

Va(t,w) =0 44 ) (@) = {

Clearly the random variable (¢, w) is an element of the mixed action simplex A(A)
and the map ¢ — v°(t,w) is an element of the space of open-loop controls for the
limit problem 8§ = {a : Ry — A(A)|a(-) measurable} for each fixed w € 2.7 Denote
by 8|07 the subspace of open loop controls restricted to the domain [0,7]. The
embedding of the strategy process t — v°(t,w) allows us to work on a relatively
compact space. Indeed, say that a sequence {1/ }jen C 8jo,1) converges weak™ to a
limit v € 8|o,7) if for every integrable function f : A x [0,7] — R we have

Jim /0 g Fla, )i (D)t = /0 S Fas (i)t (24)

acA

1 if A*(t,w) = a,

0 otherwise. (23)

The following result follows from general functional analytic facts (essentially Alao-
glu’s theorem).

Lemma 5.2. For every T > 0, the set 8|jo 7 is sequentially compact in the weak*
topology. Hence every sequence {a?} C 8|jo,r] has a weak* convergent subsequence
with limit in 8| 7).

Proof. See e.g. Lemma 5.1. in [5]. O

Defining a topology on 8, by saying that a sequence of open-loop controls {a’}
converges weak™ to a limit « if and only if each restriction o’y ) converges to the
restriction alp 7, shows that 8 is a weak® compact subset of L>(R, A(A)). To

9+ v°(t,w) is a step function, thus trivially measurable.
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summarize, for every w € 2 and every subsequence {v%/ };cny with ¢; — 0 as j — oo,
there exists a weak® converging subsequence with limit v € 8. Therefore, we can
state the following technical fact.

Lemma 5.3. The family of open-loop strategies {v°}.c(0,1) is sequentially compact
in 8 with respect to the weak™ convergence. Therefore, for every subseqeuence of
{v®}ec(0,1) there exists a subsubsequence {v*i},e; € (0,1),e; = 0 as j — oo, which
converges weakly to a random element v of the space of open loop strategies S.

Proof. Given a family of controls v° as defined in (23), define the measure-valued
random variable

T
m®(a,T) ::/O ve(t)de.

This random variable takes values in the space of Borel measures on A X [0, 00)
with the property that m®(A,T) = T for all T > 0. Measures with this property
are known as relaxed controls, and the space of deterministic relaxed controls is
known to be tight in our setting. (see e.g. [19] and the references therein). Let
us call the space of deterministic relaxed controls as R. Every such measure can
be disintegrated in the form m(a,T) = fOT m¢(a)dt, which, in our present context,
leads to the identification
mi(a) = vg(t)

almost surely and almost everywhere with respect to Lebesgue measure. There ex-
ists a topology on this space under which it is a complete separable metric space
(again see [19] for details). Thus, by Prohorov’s theorem ([4]), from every subse-
quence of the family {m®} we can extract a weakly converging subsequence. By [17],
Theorem 14.16, this can be characterized in terms of “test functions”, by requiring
that for every bounded and continuous function f : A x [0,00) — Ry with compact
support A x [0, 7], we have

/ Z fla,t)ymi(a)dt —>/ Z fla,t)ym(a)dt in distribution.
[0,7) acA [0.T) acA

Comparing this definition of weak convergence of these measures-valued random
variables with eq. (24) gives the result. O

We now finalize the proof of the convergence of the interpolated sample paths by
showing that the family of D(R, : R?) valued random variables { X< (t); t > 0}ee(o,1)
is relatively compact. This relative compactness allows us to focus on subsequences
which convergence in distribution to a random element X, which is shown to have
almost surely sample paths in €(R; : R%). This fact is established in Lemma 5.4
and Theorem 5.5, respectively.

Lemma 5.4. The family of D(R, : RY)-valued processes {XE}EG(OJ) is relatively
compact, i.e. for every subsequence of {X¢}, there exists a subsubsequence {Xe }ien
converging in distribution to a D(R, : R?)-valued random variable X.

Proof. For x € D(R, : RY) define the modulus of continuity by

w(x,0,T) = inf max  sup ||x(s) —x(¢)||
{ti} 1Si<ng telt,_,t:) >
where the sequence {t;} ranges over all partitions of the form 0 =t; < t; < ... <

tho1 < T < t, with mingy<ij<,(t; —t;—1) > J. For every fixed ¢ > 0 pick § = 5.
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Then the sequence t; =ie,i =0,1,...,[T/e] is admissible, and we see that

Xe(t) — X°(5)||o0 = F(XE AL ))]oo-
max  nax IXEE) = X5l leo = max Jlefi(Xiy, ATyl
By Assumption 1, the random vector fields {fc}, take values in the compact set
K and can therefore be uniformly embedded in a compact cube I' C R?. It follows
that for every w € Q,e > 0 and T' > 0 we have

lim w(X¢(w),d,T) = 0.

6—0
Using Assumption 1 once again, we see that for every T' > 0 the sample paths of
the step process X¢ are contained in a compact cube I'r C R? with probability 1.
Theorem 7.2 in [8] states that under these two conditions the family of processes
{Xs}ee(o,l) is relatively compact in D(Ry : R%). Under the Skorokhod topology,
this space is complete and separable. By Prohorov’s theorem, a family of probability
measures on D(R, : R?) is relatively compact if and only if they are tight. Since
convergence in distribution means that the induced laws of the processes X< on
the space D(R, : R?) converge weakly in the sense of measures, the tightness of the
processes means that the laws are tight. This completes the proof of the Lemma. [

Lemma 5.4 implies that every subsequence of the sequence of interpolated pro-
cess X¢ has a further subsubsequence which converges in distribution to a random
variable X taking values in the space D(R, : R?), and the same holds true for the
sequence of controls v°. The next Lemma characterizes the structure of the limit
process X given a weakly converging subsequence of the pair (X € v%).

Theorem 5.5. Let (XE, V%) be a sequence of interpolated process obtained from the
discrete Markov decision process which converges in distribution to a D(R, : RY)-
valued random variable X, and a random element of the set 8, respectively. Then
X is almost surely a random element of C(Ry : R?). Moreover, it has almost
surely absolutely continuous sample paths, whose derivative with respect to Lebesgue
measure is almost surely given by

d - _
&X(t) =b(X(t),v(t)).

Proof. For every x € D(R; : RY) define

J(x) ::/ e~ *min{J(x,s), 1}ds,
0
with

J(x,8):= sup ||x(t) — x(t—)||cos
0<t<s

and x(t—) = lim,_,;— x(7). Then, for every s > 0, it follows that
J(X*(w),s) <esup [kl VweQ,
keX

and therefore
J(X?(w)) < esup|lkl|loc = 0for e =0
keX

for every w € Q. Hence, J (X' €) converse to the 0 process in distribution (and hence
in pro’?ability). By hypothesis, X¢ — X in distribution. Theorem 10.2 in [8] implies
that X is almost surely a random process in G(R; : RY), and the convergence to
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this process is uniform on compact intervals. We will now characterize the sample
paths of this process X. Define the process

Ye(t,w): ==z +/0 b (X% (s,w), A% (s,w))ds

=xz+ /0 b (X% (s,w), v°(s,w))ds.

Here we have extended the domain of the drift b to R x A(A) in the obvious
way. Then, for every T > 0 and t € [0,7], there exists a n € Ny such that
ne <t < (n+ 1)e. Then, we see that
2
. 2
+ 2|3 o)

Hyf(t) - X’E(t)HQ <2 ‘ /nt B (X5 (s), 5 (5))ds

€

N 2
<206 +2 HMg(t)H

for some constant C, which can be chosen independently of ¢,T and ¢, by (7).
Hence, for A > 2Ce, which can be made arbitrary small by making & small, we
conclude from equation (22) that

2
> A) <P ( sup
0<t<T

< 1
— A
i_CE

P ( sup HYE(t) - Xz

xT
0<t<T

) 2 3 - ce)

. 2
E; ME(T)H —0ase—0.

Hence,
sup HYE(t) - Xs(t)H —0ase—=0
0<t<T

in probability. By [4], Theorem 1.3.1, this implies that Y — X in distribution.

By assumption 2 the drift converges locally uniformly to a Lipschitz continuous
function b. Together with the continuous mapping theorem ([17], Theorem 3.27),
this implies that

t

lim [ 5 (X(s), 7 (s))ds = /O b(X (), v(s))ds

e—=0 Jo

for every t > 0 and in distribution. Hence, Y* — X as ¢ — 0 in distribution, with

X(t) =+ /O B(X (), v(s))ds. (25)

The w.p.1 absolute continuity of the sample paths of the process X is now imme-
diate. O

5.2. Convergence of values. We now complete the proof of the main result we
show that V& — V for a compact set of initial conditions X C R¢. Lemma 5.3 and
Lemma 5.4 implies that from every subsequence of {(X*®,1°)}.c(0,1), there exists a

further subsequence, still denoted by {(X ¢, V%) }ee(0,1) With some abuse of notation,
which converges in distribution to a pair (X,v). The limit v is almost surely a
random element of the space of open loop control, and X is a random element of
the set of continuous functions, absolutely continuous w.r.t. Lebesgue measure. We

will now show the following Lemma.

Lemma 5.6. limsup,_,, V¢(z) <v(z).
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Proof. Let (X €, %) be interpolated date obtained by solving the discrete-time Mar-
kov decision process, and using the mesh size ¢, and fix the initial condition z. By
the above said, we can find a subsequence converging in distribution to the pair
(X,v). By the Skorokhod representation theorem ([4]) there exists a probability
space (€, G, P,), on which we can define random variables (X¢, 7¢), which have the
same distribution as the pair (X¢,2¢), but which converge almost surely to the
processes (X, v). Hence, there is a set N € G with P, (N) = 0 such that for every
w € Q\ N the function X¢(w) converges in the Skorokhod metric to the limit X (w)
and 7°(w) converges weak* to a limit v(w). The random variables X,v have the
properties described in Theorem 5.5. We will henceforth not distinguish between
the random elements (X €,v°) and its Skorokhod representation (X¢,7¢), as they
describe the same processes in distribution.
For each € € (0,1) we have

VE(z) := E, [ /0 b re”u(Xf(t),Af(t))dt] =E, [ /O h re "t (XE(t), 5 (t))dt]

where E. represents the expectation operator with respect to the probability mea-
sure P,. Define the function g : D(R,,RY) x § — R by

g0va) = [ reu(o 0, alo)i

Then, for each w € Q, the number g(X¢(w),v*(w)) is the payoff of the decision
maker under the control pair (X¢, 7). Since g is continuous at the limit (X, v), it
follows from the continuous mapping theorem ([17], Theorem 3.27) that, for each
weN\N

lim g(X* (w), v*(w)) = g(X (w), v(w))
= /000 re” "u(X (t,w), v(t,w))dt
=U(z,v(w))
< v(x). (26)

Since the map w — ¢(X¢(w),v*(w)) is bounded (Assumption 3 and Lemma 2.1) it
follows from Lebesgue’s dominated convergence theorem that

e—0 e—0

The last inequality follows from the relation (26), and completes the proof of the
Lemma. 0

To finish the proof of Theorem 3.1 it remains to show the validity of the following
result.

Lemma 5.7. liminf, ,q+ V¢(z) > v(z).

Proof. We make use of the explicit approximation procedure, described in section
2.2. For each € > 0 let a® denote the piecewise constant control, taking values in
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A, constructed in eq. (15). From Proposition 1, we know that for every § > 0 there
exists €5 > 0 sufficiently small so that

U(z,a®) >v(z) — 0 Ve € (0,e5).

We adapt this strategy for the controlled Markov chain as follows. For each n € Ny
we define a deterministic action process AS := a°(ne). Hence, independent of the
probability space variable w, we always implement the same action process { A% }nen.
Denote by P the resulting probability measure, and EZ the corresponding expec-
tations operator. The so constructed strategy is admissible and gives guarantees
the decision maker the payoff
o0
B | S0 ANru(XE, A5) | < VE@).
n=0
With a slight abuse of notation, denote the left-hand side of this equation by
Us(z,0f). Set X=(t) = X¢ and 15(t) = das for each t € [ne, (n + 1)). It fol-
lows from the sequential compactness of relaxed controls (Lemma 5.3) that, passing
if necessary to a subsequence, the deterministic limit
A,
i = im0 <
exists and defines an open-loop control in 8 (see also [5] for a related argument).
Along the same subsequence, it follows from arguments used in section 5.1 that
Xe= X in distribution, where

X(t)=x+ /0 b(X(s),v(s))ds.

X is a deterministic process which, by uniqueness of solutions to the controlled
ODE g = b(y,v(t)) ([2], Theorem II1.5.5), corresponds to the limit process of the
controlled pair (y%, a®). Therefore, Proposition 1 implies that

liminf U (x, %) = /000 re”"tu(X (t), v(t))dt = v(z).

e—0

As Ve(x) > U (z, ) for every €, we conclude that
Cf VS () > Tim inf [ ey _ .
hrg;lglfV () > hIEILl(I)lfU (x,0%) = v(x)

O
Combining Lemma 5.6 with Lemma 5.7 completes the proof of Theorem 3.1.
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