Forward Guidance and Heterogeneous Beliefs*

Philippe Andrade Gaetano Gaballo Eric Mengus Benoît Mojon

September 2018

Abstract

Central banks’ announcements that rates are expected to remain low could signal either a weak macroeconomic outlook, which would slow expenditures, or a more accommodative stance, which may stimulate economic activity. We use the Survey of Professional Forecasters to show that, when the Fed gave guidance between 2011Q3 and 2012Q4, these two interpretations coexisted despite a consensus on low expected rates. We rationalize these facts in a New-Keynesian model where heterogeneous beliefs introduce a trade-off in forward guidance policy: leveraging on the optimism of those who believe in monetary easing comes at the cost of inducing excess pessimism in non-believers.

Keywords: signaling channel, disagreement, optimal policy, zero lower bound, survey forecasts.

JEL Classification: E31, E52, E65.

*Andrade: Banque de France; Gaballo: Banque de France, Paris School of Economics and CEPR; Mengus: HEC Paris; Mojon, Bank for International Settlements. Emails: philippe.andrade@banque-france.fr, gaetano.gaballo@banque-france.fr, mengus@hec.fr, benoit.mojon@bis.org. We would like to thank Jean Barthelémy, Marco Bassett, Francesco Bianchi, Florin Bilbiie, Bill Branch, Alessia Campolmi, Gauti Eggertsson, Yurii Gorodnichenko, Refet Gürkaynak, Christian Hellwig, Guillermo Ordonez, Adrian Penalver, Ricardo Reis, Franck Smets, Jón Steinsson, Vincent Sterk, François Velde, Leo von Thadden, Mirko Wiederholt, Mike Woodford as well as seminar participants at Bank of Canada, Bank of England, Banque de France, Bundesbank, Chicago Fed, the 2014 DNB annual conference, ECB, EIEF, the GSE Summer Forum 2016, Heidelberg, the XIth CEPR Macroeconomic Policy Workshop in Budapest, PSE, SED meetings (Toulouse), the 2015 SF Fed annual conference, and the Bdf-NY Fed workshop on “Forward guidance and expectations” in New York, T2M, the University of Bern for helpful comments and discussions. The views expressed in this paper are the authors’ and do not necessarily represent those of the Banque de France or the Eurosystem.
1 Introduction

The FOMC has not been clear about the purpose of its forward guidance. Is it purely a transparency device, or is it a way to commit to a more accommodating future policy stance to add more accommodation today?

Charles I. Plosser, March 6, 2014.

When facing the Zero Lower Bound (ZLB) on its nominal policy rate, a central bank may still affect current allocations by making statements about future policy rates, indicating that they will remain very low for a significant length of time (see Krugman, 1998; Eggertsson and Woodford, 2003, among others). In the aftermath of the Great Recession, several central banks implemented such forward guidance policies with somewhat mixed success. On the one hand, expected future interest rates actually fell (as noted by Swansson and Williams (2014) among others), on the other hand, the resulting impact on the macroeconomy seemed limited or even sometimes led agents to expect future contractions (see Campbell et al., 2012; Del Negro et al., 2015; Campbell et al., 2016, among others). As emphasized by Woodford (2012), one possible reason is that a central bank’s announcement that future interest rates will remain low for a given period of time is ambiguous: it is consistent with anticipations of bad economic fundamentals – forward guidance is then said to be Delphic – or with anticipations of an expansionary monetary policy – forward guidance is then said to be Odyssean.1

The first contribution of this paper is to document that these two interpretations coexisted across individuals in the Survey of Professional Forecasters (SPF) as the Fed engaged into date-based forward guidance between 2011Q3 and 2012Q4.

More precisely, we show that the introduction of date-based forward guidance coincided with a striking drop to historically low levels of disagreement about 1-year and 2-year ahead short-term interest rate forecasts. We then compare these revisions of interest rate forecasts with the counterfactual revisions implied by a normal-time Taylor rule (estimated using individual SPF forecasts on a pre-crisis period) applied to the forecast of activity and inflation across individuals. We show that optimistic revisions of the macroeconomic outlook were associated with revisions of the expected rate below counterfactual ones. This correlation in revisions is consistent with optimists interpreting forward guidance as an Odyssean promise of

1This terminology has been introduced by Campbell et al. (2012). See also Ellingsen and Söderström (2001) for a seminal contribution where monetary policy decisions are either related to new information about the economy or to changes in the preferences of the central banker.
a future accommodative stance and hence better macroeconomic conditions. On the contrary, pessimistic revisions were associated with revisions of the expected rate in line or above the counterfactual ones. This different pattern is consistent with pessimists interpreting forward guidance as a Delphic signal of incoming worse economic conditions and a possible unintended monetary tightening (as ZLB may bind). In sum, the disagreement on the future macroeconomic variables relates to different interpretations of the same policy announcement on future rates.

Importantly, for optimists forecasters, the correlation between expected inflation and expected interest rates becomes negative for only when the Fed announces date-based forward guidance. In the ZLB period that goes from 2009Q1 to 2011Q2 revisions in inflation and interest rates forecasts were positively correlated (in line with normal-time Taylor rule policy) no matter the degree of optimism on the macroeconomic outlook. Such unconditional correlation turns negative only after date-based forward guidance announcements but only for optimistic forecasters. This finding reinforces our view that fixed-date forward guidance induced a switch in the correlation between expectations on policy and expectations on fundamentals for some but not all agents.

Our second contribution is to introduce an otherwise standard New-Keynesian model to study the trade-off induced by the heterogeneity in interpretation of forward guidance announcements.

In our model, a discount factor shock forces the economy to the ZLB for an uncertain number of periods. The central bank receives information on the length of the trap. Based on its own information the central bank forms an expectation about the number of periods during which it will keep interest rates at zero. This expectation is publicly observable. An agreement on future rate path obtains as agents perceive the information held by the central bank as accurate. However, although all agents observe the same announcement and believe that the authority has superior information, they can still disagree on the reasons why the central bank does it. In particular, their prior on the commitment ability of the central bank can differ. As the commitment ability is not observable, agents can agree to disagree about the policy actually conducted. Odyssean agents – who believe in the commitment ability of the central bank – see the announcement as including some periods of extra accommodation, contingent to any possible realization of the length of the trap. By contrast, Delphic agents – who do not believe in the commitment ability – consider there will be no period of extra
accommodation at the end of the trap. As a result, Delphic agents can misinterpret the announcement as signal of a longer trap. This confusion can only arise once the ZLB binds in which case policy rates will remain at zero several periods irrespective of the central bank commitment ability.

In equilibrium, and consistently with the patterns observed in survey data, agents agree on the path of future interest rates but disagree about the potential future accommodation at the end of the trap. Hence they disagree on future aggregate demand and inflation. As a result, optimists consume more in anticipation of a boom whereas pessimists consume less in anticipation of a recession. These offsetting choices hamper the effectiveness of forward guidance even in situation where the private sector agrees that future interest rates will remain at zero.

Finally, we use the model to study how heterogeneous interpretations of forward guidance policy affects its effectiveness. We show that the number of periods of extra accommodation that maximises the stimulus is a hump-shaped function of the fraction of Delphic agents: a few of these agents may lead the central bank to reinforce its forward guidance by leveraging on the consumption of Odyssean agents. Yet, when a sufficiently large fraction of agents are Delphic, additional periods of policy accommodation have increasing negative effects on current macroeconomic conditions. In fact, in response to an Odyssean announcement, Delphic agents become excessively pessimistic, i.e. they believe that the trap is longer than it actually is. Moreover excess pessimism grows with the length of the forward guidance horizon. This may lead a central bank, who has commitment ability, to find optimal engaging into Delphic rather than Odyssean forward guidance.

In conclusion, heterogenous beliefs rationalize the evidence in the literature that forward guidance had been extremely powerful in lowering expected future interest rates, although it had limited macroeconomic impact. This implies that, in contrast to frequent policy discussions, gauging the effectiveness of forward guidance announcements by merely looking at the reaction of expected future policy rates is misleading. Indeed, agents may disagree on the meaning of such a low path of future interest rate.

Related literature. Del Negro et al. (2015) underline that standard DSGE models predict unrealistic high macroeconomic impact of changes in future rates even if such change will occur in the far future – the so-called “forward guidance puzzle”. In response a recent literature (Wiederholt, 2014; McKay et al., 2016; García-Schmidt and Woodford, 2015; Gabai,
calls for a wide revision of the benchmark model which has consequences for the predictions on how an economy reacts to changes in future fundamentals also in normal times. In contrast, our model attributes the ineffectiveness of forward guidance to a specific distortion on communication policy that remains inside the logic of the benchmark model and strictly pertains to the presence of the ZLB.

Our paper is also connected with the literature on the signaling channel of monetary policy (e.g. Ellingsen and Söderström, 2001) – i.e. that monetary policy conveys information about the future state of the economy to the private sector. Such a channel was found to be empirically relevant (see Romer and Romer, 2000; Gürkaynak et al., 2005; Nakamura and Steinsson, Forthcoming, among others). Campbell et al. (2012) extend these results in a sample that includes the Great Recession and FG policies (see also Del Negro et al. (2015) and Campbell et al. (2016) for similar evidence on the more recent period). More recently, Melosi (2016) and Nakamura and Steinsson (Forthcoming) investigate the effects of this channel in general equilibrium models on the dynamic of inflation expectations or on the response of macroeconomic variables to policy announcements. We contribute to this literature by documenting the heterogeneity of individuals’ macroeconomic forecasts at the time of forward guidance announcements and by highlighting the resulting policy trade-offs. Our findings then relate to the recent literature studying survey data, and in particular their cross-sectional heterogeneity, to characterize the formation of macroeconomic expectations (e.g. Mankiw et al., 2003; Coibion and Gorodnichenko, 2012, 2015; Andrade and Le Bihan, 2013; Andrade et al., 2016).

Several papers investigate the role of imperfect information at the ZLB (Kiley, 2014; Bianchi and Melosi, 2015a,b; Michelacci and Paciello, 2016). In particular, Wiederholt (2014) argues that forward guidance can be detrimental for a different reason that our excess pessimism channel: forward guidance triggers a coordination failure by providing information about an inefficient shock – a principle that parallels the analysis of the social value of information by Angeletos et al. (2016). Other mechanisms can make a partial release of public information welfare detrimental, see for example Amador and Weill (2010) and Gaballo (2016) based on learning externalities. Our approach differs from this literature as there is no uncertainty about future policy actions (policy rates) nor about the current allocation but only

2See also the initial theoretical contributions on macroeconomic expectations by Mankiw and Reis (2002) or Morris and Shin (2006) among others.
about the interpretation of policy actions.

Finally, our paper contributes to the literature on optimal monetary policy at the ZLB. Krugman (1998), Eggertsson and Woodford (2003) and Werning (2012) study the optimal policy at the ZLB in an infinite horizon model, emphasizing the associated commitment problem (see also Jung et al. (2005), Adam and Billi (2007), Nakov (2008) or more recently Bilbiie (2016)). Bodenstein et al. (2012) investigate quantitatively how imperfect credibility lowered the impact of forward guidance policies. In contrast to our findings, they conclude that imperfect credibility could always be compensated by extending the period of low interest rates and forward guidance can never be detrimental. This is not the case in our model because excess pessimism grows with the length of the forward guidance horizon.

2 Survey-based stylized facts on date-based forward guidance

In this section, we present new facts on the cross-sectional dispersion of forecasts observed in the Survey of Professional Forecasters during the period when the Fed conducted a date-based forward guidance policy. We also document that this change of communication coincides with a change in the unconditional correlations of revisions in expected interest rates, inflation and consumption growth at the individual level, i.e. a change in the way professional forecasters relate variations in the state of the economy to variations in policy rates.3

On August 8, 2011, the FOMC stated that “The Committee currently anticipates that economic conditions [...] are likely to warrant exceptionally low levels for the federal funds rate at least through mid-2013”. Following this first announcement of date-based forward guidance, the Fed extended the horizon twice. On January 25, 2012 the horizon was extended to “... at least through late 2014”. And on September 13, 2012, it was extended to “...at least through mid 2015”. The FOMC had already implemented forward guidance before Summer 2011; starting its December 2008 meeting the Fed issued “open-ended” statements and referred to a period of “exceptionally low interest rates” that will last “for some time” or “for a long period of time”. So the horizon during which interest rates would be kept at zero was less precise. Date-based forward guidance ended on December 12, 2012, when the FOMC moved to a “state-based” forward guidance whereby it committed to keep policy rates at zero as

3 In the appendix we present comparable evidence based on individual households’ expectations observed in Michigan Survey of Consumers.
long as inflation and unemployment rates did not reach specific numerical thresholds (and inflation expectations remained anchored) and the reference to a specific date for keeping rates at exceptionally low levels was dropped altogether.

As we detail below, this period of date-based forward guidance coincided with striking patterns in the heterogeneity of forecasts observed in the US Survey of Professional Forecasters (SPF). Professional forecasters agreed that interest rates will stay low for long and revised downward their 2-year ahead interest rate expectations. But they had two different views on the future macroeconomic outlook: some revised their forecasts of future inflation and consumption growth upward while others revised their forecasts downward. We show that this pattern is consistent with optimistic (pessimistic) revisions being associated with an increase (no increase or a decrease) in the degree of monetary policy accommodation. In contrast, we do not find similar patterns in the correlation of individual forecast revision before date-based forward guidance announcements.

2.1 Forecasters agreed that short-term interest rates will remain low for long

Figure 1 presents the evolution of the interquartile range in the cross-section distribution of individual 1-quarter, 1-year and 2-year short-term nominal interest rate forecasts since 2002. Three specific subperiods are highlighted: 2008Q4-2011Q2 which corresponds to the time when the US economy reached the ZLB and the Fed conducted its “open-ended” forward guidance; 2011Q3-2012Q3 which corresponds to the “date-based” forward guidance period; and 2012Q4-2013Q2 which corresponds to a “state-based” forward guidance policy.

This figure reveals that the date-based forward guidance period was associated with a sharp drop in the dispersion of short-term nominal interest rate forecasts. In particular, this dispersion on medium-term (1-year and 2-year) nominal interest rate forecasts dropped to their lowest value since 2002 (and actually since at least 1982 when the survey started to collect such interest rate forecasts).

So, the commitment to keep interest rates at zero until an explicit date was associated with an exceptional coordination of opinions about future interest rate on an horizon broadly consistent with the length of the initial date-based forward guidance announcement. By contrast, the “open-date” announcements used from 2008Q4 to 2011Q2 were only associated
with a strong coordination of opinions on 1-quarter interest rate forecasts.\(^4\)

We can summarize this paragraph’s findings as follows:

Fact 1. When “date-based” forward guidance started, professional forecasters’ disagreement on future short-term interest rates 1-year and 2-year ahead declined sharply and reached an historical low.

Several previous studies have showed that this period also coincided with the average expectation that interest will be low for long (see also the appendix for further evidence on first order moments). Fact 1 together with these existing results indicate that, during the date-based forward guidance period, forecasters revised their short-term interest rate forecasts to eventually agree on a period of low interest rates over the next two years. Therefore, the policy announcement has been perceived as credible. We next investigate to which extent such agreement on interest rates reflected an agreement on the future macroeconomic outlook.

2.2 Forecasters interpreted the same path of future interest rates differently

We now document how agents revised their expectations about macroeconomic conditions, i.e. inflation and consumption growth. We show that, even though forecasters unanimously revise down their expectations on interest rates, optimistic revisions were associated with an Odyssean interpretation of the announced path for future interest rates while pessimistic revisions were in line with a Delphic interpretation of the same path.

We first investigate how professional forecasters updated their medium-term (2 years ahead) forecasts of consumption growth, inflation and short term interest rates in the SPF released for 2011Q4, 2012Q1 and 2012Q4, i.e. after each of the three date-based forward guidance announcements.

More specifically, we look at individual revisions of forecasts between two subsequent surveys observed after each of the “date-based” forward guidance announcements (which were made on August 9, 2011; January 27, 2012 and September 13, 2012): (i) revisions between the the 2011Q3 survey (conducted between July 29 and August 8, 2011) and the 2011Q4 survey (conducted between October 27 and November 8, 2011); (ii) revisions between the 2011Q4 survey and the 2012Q1 survey (conducted between January 27 and February 7, 2012); (iii)

\(^4\)This is consistent with Engen et al. (2014) who provide survey evidence that it took time for the Fed to convince private agents that its unconventional policies implied a long period of low future interest rates.
revisions between the 2012Q3 survey (conducted between July 27 and August 7, 2012) and the 2012Q4 survey (conducted between October 26 and November 6, 2012).

Table 1 presents the average revisions of these 2-year forecasts for three different subgroups of forecasters. “Optimists” who have both revisions of inflation and consumption growth above the average revision across forecasters observed at that date. “Pessimists” who have both revisions of inflation and consumption growth that are below the average. And “Pessimists and others” which are forecasters that are not optimists.

By construction, optimists have higher revisions of inflation and consumption forecasts than pessimists. However, Table 1 reveals that, on average, every group revised similarly (downward or non-significantly differently from zero) their interest rate forecasts. This happened despite revisions of inflation and consumption forecasts were significantly different when comparing the average of the two groups. These results also applies, although with a lower degree of significance, when comparing optimists with the rest of forecasters as a whole.

That optimists (resp. pessimists) revised their inflation and consumption forecasts upward (resp. downwards) when revising interest rates downward is consistent with the anticipation that lower future interest rates correspond to a more accommodative monetary policy (resp. weaker fundamentals) in the future.

We provide evidence that this is indeed the case by comparing the observed individual revisions in nominal rate to the individual revisions of their subjective shadow Taylor rate implied by each forecasters’ revision in inflation and consumption growth expectations. More precisely, we compute by how much each forecaster should have revised their 2-year forecasts of short term-interest rate, if they were to infer these forecasts from their pre-ZLB perceived Taylor rule. A lower revision in the nominal rate compared with the revision in the shadow Taylor rate corresponds to a policy accommodation (i.e. the expectation of a accommodative monetary policy shock) with respect to normal times. Conversely, a larger revision in the nominal rate than the revision in the shadow Taylor rate corresponds to a policy tightening (i.e. the expectation of a restrictive monetary policy shock) with respect to normal times.

5 The relatively low frequency of the SPF data prevents from observing the reaction of individual forecasts on a specific day. See Del Negro et al. (2015) for an attempt that uses monthly data.

6 We use the panel of individual forecasts in the SPF to estimate a perceived Taylor rule using data prior to 2008Q3. The postulated rule includes an interest rate smoothing term and reactions to an inflation and to an output growth gaps. The target inflation and potential growth are obtained from individual 10 year ahead forecasts. The estimation features individual fixed effects. We then infer revisions in the individual shadow Taylor rate using their estimated perceived Taylor rules and their individual revisions in macro-economic forecasts.
<table>
<thead>
<tr>
<th>Forecast revisions</th>
<th>Optimists</th>
<th>Pessimists</th>
<th>Pessimists and others</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of individuals</td>
<td>19%</td>
<td>29%</td>
<td>81%</td>
</tr>
<tr>
<td>Consumption</td>
<td>.32 (.28)</td>
<td>-.20 (.19)</td>
<td>-.05 (.41)</td>
</tr>
<tr>
<td>Inflation</td>
<td>.19 (.22)</td>
<td>-.22 (.14)</td>
<td>-.12 (.55)</td>
</tr>
<tr>
<td>Nominal rates</td>
<td>-.41 (.46)</td>
<td>-.38 (.30)</td>
<td>-.42 (.44)</td>
</tr>
<tr>
<td>Revisions of shadow Taylor-rate</td>
<td>.35 (.25)</td>
<td>-.37 (.14)</td>
<td>-.16 (.37)</td>
</tr>
<tr>
<td>2012Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of individuals</td>
<td>22%</td>
<td>23%</td>
<td>78%</td>
</tr>
<tr>
<td>Consumption</td>
<td>.79 (.33)</td>
<td>.13 (.24)</td>
<td>.19 (.24)</td>
</tr>
<tr>
<td>Inflation</td>
<td>.48 (.29)</td>
<td>-.26 (.29)</td>
<td>-.12 (.30)</td>
</tr>
<tr>
<td>Nominal rates</td>
<td>-.37 (.55)</td>
<td>-.04 (.08)</td>
<td>-.04 (.07)</td>
</tr>
<tr>
<td>Revisions of shadow Taylor-rate</td>
<td>.86 (.55)</td>
<td>-.17 (.31)</td>
<td>.05 (.35)</td>
</tr>
<tr>
<td>2012Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of individuals</td>
<td>36%</td>
<td>24%</td>
<td>64%</td>
</tr>
<tr>
<td>Consumption</td>
<td>.20 (.19)</td>
<td>-.26 (.22)</td>
<td>-.21 (.26)</td>
</tr>
<tr>
<td>Inflation</td>
<td>.19 (.23)</td>
<td>-.32 (.32)</td>
<td>-.17 (.36)</td>
</tr>
<tr>
<td>Nominal rates</td>
<td>-.04 (.15)</td>
<td>.02 (.02)</td>
<td>-.02 (.06)</td>
</tr>
<tr>
<td>Revisions of shadow Taylor-rate</td>
<td>.23 (.30)</td>
<td>-.36 (.27)</td>
<td>-.27 (.26)</td>
</tr>
</tbody>
</table>

Corr(rev. inflation, rev. rates)			
2009Q1-2011Q3	.41 (.07)	.15 (.07)	.24 (.07)
2011Q4-2012Q4	-.26 (.20)	.38 (.25)	.22 (.15)

Table 1: Average revisions of 2 years ahead forecasts across groups of forecasters.

This table reports the cross-section average of individual revisions for consumption, inflation and short-term nominal interest rates forecasters 2 years ahead for different groups of forecasters. Forecasters are classified as 'Optimists' when both their inflation and consumption revisions are above the cross-sectional mean at the specified date, as 'Pessimists' when both inflation and consumption revisions are below the cross-sectional mean. The group 'Pessimists and others' gathers all forecasters excluding the optimists. Standard deviations are reported in parenthesis.

Table 1 reports the average and the standard deviation of this revision in the shadow Taylor rate for optimistic and pessimistic forecasters. We obtain that agents making pessimistic revisions of fundamentals have revised their expected shadow rate downward by the same extent or by even more than their expected nominal interest rates. The result suggests that, for these forecasters, future monetary policy was perceived as either just in line with what the normal time reaction function of the central would predict, or even tighter compared to this.
with normal time rule. This is consistent with pessimistic revisions being associated with a Delphic view of future monetary policy.

In contrast, we obtain that agents making optimistic revisions have revised their expected shadow rate by less than their expectations of nominal interest rates, with the difference being statistically significant. In relative terms, this then implies that these agents were expecting more policy accommodation, consistently with an Odyssean view of future monetary policy.

This leads to the following fact:

Fact 2. Two groups of forecasters coexisted during the date-based forward guidance period despite they had a similar downward revision in expected interest rates. Optimistic revisions of inflation and consumption forecasts were associated with an expectation of more policy accommodation, consistent with an Odyssean interpretation of the announcements. By contrast, pessimistic revisions in inflation and consumption forecasts were associated with an expectation of equal or less policy accommodation, consistent with a Delphic interpretation of the same announcements.

It is interesting to remark that the fraction of optimistic forecasters was non-negligible during the date-based forward guidance period and that this fraction has varied over time: it has increased from roughly 20% to 36% with the later announcement of September 2012. This suggests some forward guidance announcements were more effective than others in convincing a significant fraction of the population that it intended to provide further accommodation. Del Negro et al. (2015) provide complementary evidence that the interpretation of forward guidance announcements changed over time. Finally, despite some evolution of optimists and pessimists, it is important to note that the fraction of pessimists remained sizable for the three specific dates considered. So how to interpret the path of future interest rate announced remained ambiguous for each of these three announcements.

2.3 The specificity of the Date-Based Forward Guidance period

The difference between revisions in expected interest rates and revisions in shadow Taylor rates suggests that FG announcements modified the relation between expected interest rates and expected fundamentals for optimistic agents.

This is confirmed by the results shown in the bottom panel of Table 1. For optimists, the correlation between revisions of inflation forecasts and interest rate forecasts is negative for the dates corresponding to date-based forward guidance, again consistent with an Odyssean understanding of such announcements. In contrast, this correlation was positive from 2009Q1
until 2011Q3—a period when policy rates were already at the ZLB—for all groups of forecasters whereas it remained positive for non-optimists after date-based forward guidance, consistent with a Delphic interpretation of the announcements.

Overall, our evidence suggests that, with the date-based forward guidance period, the expectation of lower interest rates led to more optimistic revisions both on fundamentals and future monetary policy stance for some agents. This is a key difference with normal time evidence, showing that, on average, expectations of lower interest rates signal worse macroeconomic outlook (see e.g. Campbell et al. (2012), Nakamura and Steinsson (Forthcoming)) and that agents understand the mapping between policy rates and fundamentals (see e.g. Carvalho and Nechio (2014) and Andrade et al. (2016)).

The combination of similar views about future interest rates together with disparate views on future inflation and consumption that started with date-based forward guidance impacts the disparities in the levels of individual 2 years ahead forecasts. More precisely, compared to historical standards, the beginning of date-based forward guidance is associated with a significant excess disagreement about these medium-term forecasts.

This is illustrated by Figure 2 which displays the residuals from a regression of the disagreement about 2-year ahead forecasts of consumption (resp. inflation) on the disagreement about 2-year ahead forecasts of short-term nominal interest rates controlling for the disagreement about 1-quarter ahead consumption and inflation forecasts and estimated on a pre-crisis sample (1982Q2-2008Q4). The beginning of the date-based forward guidance policy is again a striking outlier. Before August 2011 the residuals are not significantly different from zero. Disagreement about future inflation stays in the range of what its correlation with disagreement on 1 quarter inflation forecasts and disagreement on interest rate would predict. By contrast, disagreement on future consumption and inflation becomes significantly higher than its predicted value starting August 2011. Controlling for short-term disagreement, disagreement about medium-term inflation started to be much higher than what disagreement about future interest rates would imply at the time the date-based forward guidance started to be conducted.

A concern is that this excess disagreement results from an increase in uncertainty. Yet, our control for disagreement on short-term inflation and consumption forecasts, which are often used as a proxy for uncertainty, should partly capture such an increase. As we document in appendix, there is no clear evidence that date-based forward guidance coincided with an increase
in uncertainty as measured with five commonly measures of macroeconomic uncertainty. Furthermore, one still observes excess disagreement in 2-year consumption and inflation forecasts during the date-based forward guidance period if one includes such alternative measures as additional controls in the regression exercise.

To sum up, the period of date-based forward guidance is characterized by striking patterns in the cross-section distribution of professional forecasters or households expectations. Some of them had optimistic expectations associated with the belief of future policy accommodation – Odyssean interpretation of forward guidance. Others had pessimistic expectations associated with the belief that the policy announcement was a signal of bad news on future fundamentals – Delphic interpretation of forward guidance – (Fact 2). Such an heterogeneity of individual forecasts was coincident with a consensus (or a lower disagreement) on the path of future interest rate (Fact 1). It was also coincident with a mild response of the average survey expectation of these two variables as already documented in several previous studies (see, e.g., Campbell et al. (2012), Del Negro et al. (2015) or Campbell et al. (2016) and the appendix for an illustration on the US SPF data).

3 A model of disagreement on policy

In this section, we extend a standard New-Keynesian model with a zero lower bound in the spirit of Eggertsson and Woodford (2003) by allowing for heterogenous beliefs. Our aim is to model a situation in which agents may disagree on the type of policy conducted by the central bank although they agree on future interest rates. We show that this is the case when agents: i) are uncertain about fundamentals, ii) have different priors on the commitment ability of the central bank, and iii) view central bank’s announcements of expected rates as accurate.

When agents perceive a central bank’s announcement of expected future rates to be based on accurate information on the length of the trap then their disagreement about expected rates must unambiguously decrease. However, different priors on the commitment ability of the central bank - and so about the type of policy implemented - creates heterogeneity in the interpretation of the reasons behind such policy path. In particular, an announcement that policy rates will be low for longer can be either interpreted optimistically as a signal of a more accommodative future stance (i.e. Odyssean forward guidance), or pessimistically as a signal of weaker future fundamentals (i.e. Delphic forward guidance).

This ambiguity in signaling is a peculiar outcome of times where the ZLB binds. In fact,
only in such a case, the authority can improve on its normal time Taylor rule by committing to a future deviation from it. On the contrary, away from the ZLB, there cannot be ambiguity as incentives to deviate disappear in normal times.

In the remainder of this section, we first present the key equations and assumptions of the modeling framework. We then characterize different equilibria, stressing the possibility of disagreement on future policy. We finally derive some positive implications and compare them to the facts highlighted in the empirical section. The optimality of the monetary policy at the ZLB in the presence of heterogenous beliefs is discussed in Section 4.

3.1 NK-economy with heterogeneous beliefs

Our model is a standard New-Keynesian model extended to account for heterogeneous beliefs. To streamline the presentation, we directly discuss the three key equations of the model – the IS curve, the New-Keynesian Phillips curve and the monetary policy rule – expressed in log-linear deviations from the steady-state. The detailed microfoundations underlying these equations as well as the detailed derivations are postponed to appendix.

Consumption equation. There is a unit mass of atomistic agents indexed by \(i \in [0,1] \); they are homogeneous in any respect, except that they may hold different beliefs. Their consumption decisions comply with the standard Euler equation (expressed in log-linear deviations from the steady-state):

\[
c_{i,t} = -\gamma^{-1}(E_{i,t}[\xi_{t+1}] - \xi_t + r_t - E_{i,t}[\pi_{t+1}]) + E_{i,t}[c_{i,t+1}],
\]

where \(c_{i,t} \) denotes the consumption of agent \(i \) at time \(t \), \(\gamma \) is the inverse of the inter-temporal elasticity of substitution \(E_{i,t}[\cdot] \) represents the conditional expectation of agent \(i \) at date \(t \), \(\xi_t \) is a common shock hitting at date \(t \) the discount factor in agents’ utility function, \(r_t \) is the nominal interest rate and \(\pi_{t+1} \) is inflation at date \(t + 1 \).

Heterogeneity in beliefs can potentially induce different individual consumption paths, and hence different wealth profiles. In the micro-foundations of our model, detailed in the appendix, we include a risk sharing mechanism that endogenously make agents equalize their wealth as soon as they agree on the future course of the economy. As a result, in our setup differences in wealth can only be temporary; that is, agents have the same steady state level of consumption. This assumption allow us to isolate the effect of heterogeneity of beliefs on
the effectiveness of monetary policy, abstracting from potential long-run inequality effects (see Curdia and Woodford, 2010; Wiederholt, 2014, for alternative mechanisms).

Shock. As it is standard in the literature on optimal policy at the ZLB, we focus on a particular sequence of discount factor shocks that drags the economy in a liquidity trap, i.e. a situation where the natural rate of interest is below its steady state for a number of periods.\(^7\)

Formally, at time 0 Nature draws a series of shocks \(\{\xi_{\tau}\}_{\tau=0}^{\infty}\) from a commonly known prior distribution to the households’ discount factor \(P\) such that \(\xi_{\tau} - \xi_{\tau+1}\) takes value \(-\xi\) with \(\tau = 0, \ldots, T - 1\) and zero afterward. This generates a *trap* of length \(T \in \mathbb{N}\) which starts at time \(t = 0\) and ends in \(t = T\), which is the first period out of the trap. None of the following results hinge on the particular form of the prior distribution; we will come back on this point later.

We assume that agents perfectly observe the size of the discount factor shock at time \(t = 0\), but they are uncertain about its persistence, i.e. the length of the trap \(T\). Note that, from the point of view of agents, the end of the trap has the feature of a “news” on a future shock. As such it can be only assessed *ex post*. We describe how agents form expectations on the length of the trap \(T\) later in this section.

Phillips Curve. The optimal choices of firms and households lead to a New-Keynesian Phillips curve which links the current aggregate inflation to current aggregate consumption and to the average expectation of future inflation across different individuals \(i\). Namely, we get (see the appendix for details):

\[
\pi_t = \kappa c_t + \beta \int_0^1 E_{t,t}[\pi_{t+1}] di,
\]

with \(\kappa\) the slope of the Phillips curve and \(\beta\) the agents’ discount factor. Three conditions are needed for the derivation to hold: i) agents perfectly observe the current allocation; ii) firms’ shares are held by agents in equal proportion; and iii) agents participate to the same labor market. In particular, the second condition makes sure that firms maximize profits using the same stochastic discount factor and that the relevant expectation for pricing is the average one across agents’ type. In our working paper version Andrade et al. (2018), we show that our results are robust to changes in these assumptions.

\(^7\)Similar insights can be obtained in the context of endogenously low natural rate of interest as in Eggertsson and Krugman (2012) or Eggertsson and Mehrotra (2014) as soon as agents can disagree on future monetary policies.
Monetary policy. The central bank sets a path of nominal interest rate \(\{r_t\}_{t \geq 0} \). The objective of the monetary authority and the derivation of its optimal policy are addressed in Section 4. At this stage, it is sufficient to note that the monetary authority could potentially offset any change in real interest rates by appropriately setting \(r_t \) so that the term appearing in brackets in (1) equals zero at any time. In this case, neither consumption nor inflation fluctuate so that the resulting allocation entails the unconstrained first-best.

However, nominal interest rates face a zero lower bound (ZLB) so that they cannot go negative. This constraints policy actions, so that, when a negative discount shock is sufficiently large, the best the monetary authority can do is to maintain interest rates at zero for a given period of time, i.e. to set the interest rate in deviation from steady-state to \(r_t = -\log R \) with \(-\log R = \log \beta\) the (real) natural rate of interest in steady-state.

Therefore, for our purposes and without loss of generality (given the nature of the shock considered), we restrict our attention to the following policy representation:

\[
 r_t = -\log R \quad \text{for} \quad t \leq T_{zlb} \\
 = \phi \pi_t \quad \text{otherwise},
\]

with \(\phi > 1 \) ensuring determinacy. \(T_{zlb} \) represents a lift-off date for interest rates, which is the key policy choice of the central bank.

A conventional monetary policy would conduct to a lift-off date satisfying \(T_{zlb} = T \). The monetary authority provides the maximal stimulus during the trap and then raises interest rates once out of the trap. In line with the standard Taylor principle, this policy ensures reaching the steady state as soon as possible.

At the ZLB, however, following such a conventional monetary policy may not be the closest to social optimum. As shown by Krugman (1998), Eggertsson and Woodford (2003) and Werning (2012), the constrained first-best policy then prescribes to keep policy rates at zero for longer than required by a strict application of the Taylor principle. Indeed, the authority can stimulate current consumption by promising to keep short-term rates at zero for some periods after the trap ends that a liftoff date \(T_{zlb} \geq T \). This policy generates an expansionary stimulus after the end of the trap, i.e. boosts inflation and consumption in the future. In turn, the expectation of a future boom stimulates current consumption and reduces the impact of the crisis.

As is well-known, this unconventional policy is time-inconsistent. Once the recovery occurs, inflation is no longer socially desirable and the authority is tempted to renege on her
promise and to set \(r_t = \phi \pi_t \) from \(T \) onward as prescribed by a Taylor rule satisfying the Taylor principle. Therefore, implementing this second-best policy at the ZLB requires a central bank to commit to tolerate inflation above the target (zero in our case) for some time in the future.

We then define the following.

Definition 1. Given a length of the trap \(T \), the authority implements an Odyssean policy when setting a lift-off date \(T_{zlb} = F_o(T) > T \), whereas it implements a Delphic policy when setting a lift-off date \(T_{zlb} = F_p(T) = T \). Only if the authority has commitment ability, it can implement an Odyssean policy.

We borrow this terminology from Campbell et al. (2012). When the authority implements an Odyssean policy, the lift-off date includes a commitment to a period of extra accommodation that depends on the actual length of the trap (i.e. the authority ties its hands as Odysseus before he meets the sirens). Conversely, when the authority implements a Delphic policy, the lift-off date just reflects its expected length of the trap (in this sense, it directly reveals the expectation of the authority). We shall assume \(F_o(\cdot) \) being invertible.

Note that having the ability to commit is a necessary but not sufficient condition for an authority to be willing to implement an Odyssean policy. There are cases in which an authority with commitment ability may find optimal to not implement any commitment (or equivalently to commit to zero periods of extra accommodation). We will discuss this issue in Section 4 when analyzing optimal policy. For the moment, we will take the type of policy as given and look at how agents react to it.

Information of the Central Bank. The central bank receives a perfectly informative signal on the actual length of the trap \(T_{cb} \) (in our working paper version Andrade et al. (2018) we relax this assumption). Thus, the central bank expected length of the trap is given by \(E_{cb,0}[T] = T_{cb} \). The central bank then forms an expectation on its future policy actions \(E_{cb,0}[T_{zlb}] \) as

\[
E_{cb,0}[T_{zlb}] = F_\rho(T_{cb})
\]

where \(\rho \in \{o, p\} \) denotes the type of policy implemented: \(\rho = o \) in case of an Odyssean policy and \(\rho = p \) in case of a Delphic policy (bear in mind this is the pessimistic case). As just said above, in this section we take \(\rho \) as given.

Information of households. Each household observes a central bank’s future expected actions, i.e. agents observe the expectation of the lift-off date held by the authority, \(E_{cb,0}[T_{zlb}] \).
With a little abuse of language we will refer to $E_{cb,0} [T_{zlb}]$ as being revealed by an announcement of the central bank. However, note that we do not model the choice to make an announcement, we just assume $E_{cb,0} [T_{zlb}]$ is publicly observable. On the other hand, each household has an uninformative prior about the length of the trap (in our working paper version Andrade et al. (2018) we relax this assumption).

Yet, agents do not observe neither ρ nor T_{ch}. In particular, during the trap, both the Odyssean and the Delphic types of policy require keeping interest rates at the ZLB for a number of periods, so that one cannot be distinguished from the other. Therefore, provided there is no evidence that contradicts their beliefs, agents can agree to disagree about both the type of authority and the length of the trap, which are only revealed when the trap actually ends and the effective policy is observed.

We define two types of agents based on their prior beliefs on the type of policy pursued by the authority.

Definition 2. Let $\rho_i \in \{o, p\}$ the belief of agent i on the type of policy implemented. A fraction of agents $\alpha \in [0, 1]$ believe that the policy implemented is Delphic – that is, $\rho_i = p$ for each $i \in [0, \alpha]$ – the rest of the population believe that the policy implemented is Odyssean – that is $\rho_i = o$ for each $i \in (\alpha, 1]$.

This definition involves no loss of generality. In particular, Delphic agents can also expect some future policy accommodation. As we will see, the important ingredient is that – everything else being equal – Delphic agents revise their expectations about the length of the trap by more than Odyssean agents do, so that their inflation and consumption expectations fall. Similarly, note that we consider degenerate individual expectations: agents believe the policy is either Delphic or Odyssean, without any uncertainty. Although theoretically this specification can be equivalently interpreted as a case in which all agents put an equal probability α on the authority being Delphic, the heterogeneous belief interpretation connects with the evidence documented in Section 2.

Equilibrium definition. For given prior distribution P on the length of the trap, signals $\{T_{ch}\}$, a type of policy $\rho \in \{o, p\}$ and a profile of agents beliefs on the type of policy $\{\rho_i\}_{i\in[0,1]}$ characterized by α, an equilibrium at time 0 is:

(i) an expectation of the authority on the lift-off date $E_{cb,0} [T_{zlb}]$,

(ii) for each individual i, a set of beliefs on $\{T, T_{zlb}\}$ and $\{\{c_j, \tau\}_{j\in[0,1]}, \pi_\tau\}_{\tau=1}^\infty$ which are conditional on $\{E_{cb,0} [T_{zlb}], \rho_i, P\}$,
(iii) a current rate of inflation and a profile of current individual consumptions, \(\{ \{ c_{i,0} \}_{i \in [0,1]}, \pi_0 \} \), that satisfy (1)-(3) given the set of individual beliefs.

We focus on equilibria as in Eggertsson and Woodford (2003) or Werning (2012) where the economy exits the trap when the shock ends. In general, many equilibria can exist including self-fulfilling liquidity traps as in Mertens and Ravn (2014).

Two remarks are in order here. First, implementing an Odyssean policy does not require that the authority fixes a path of interest rates once forever no matter what. In an optimal Ramsey plan under uncertainty the authority commits to a period of extra accommodation as a function of the realized end of the trap. In this sense, an authority who implements an Odyssean policy expects setting policy rates at zero for a number of periods, but should the realized length of the trap be longer (shorter), the periods of extra accommodation will be longer (shorter). Hence, \(E_{cb,0}[T_{zlb}] \) is the rational expectation about the number of periods with zero policy rates formed by an authority depending on the type of policy implemented and its information on the length of the trap – it is never a deterministic prediction.

Second, our setting naturally extends to settings where the central bank announces \(E_{cb}[T_{min}] < E_{cb}[T_{zlb}] \) where \(T_{min} \) is an expectation for the minimal number of periods at which rates are expected to stay at zero. In which case, we would need to focus on \(E_{cb}[T_{min}] \).

3.2 Characterization of equilibria with heterogeneous beliefs

Let us investigate agents’ beliefs and, more importantly, how private agents’ beliefs shape the allocation and, in particular, inflation and consumption expectations. Our main objective now is to discuss how the resulting heterogeneity in the length of the trap transmits to expected consumption and inflation paths. In particular, we show the resulting equilibrium has features in line with all the facts described in Section 2.

Agents’ beliefs As we document in Section 2, announcements on the path of future interest rates were perceived to be accurate (as implied by the agreement on future interest rates documented in the data). To replicate that fact in the simplest way, we have made two assumptions. First, we have assumed that the central bank receives a perfectly informative signal while the private agents only have imprecise information. Second, we have assumed that the number of periods during which the CB expects it will keep interest rate at zero \(T_{zlb} \) is public information. In this simple setup, there is no strategic choice on the announce-
ment. Under these two assumptions, central banks announcements about lift-off date \$T_{zlb}\$ are perceived as perfectly accurate:

\[E_{i,0}[T_{zlb}] = E_{cb,0}[T_{zlb}] = T_{zlb}. \]

(5)

However, private agents still disagree on the length of the trap. Specifically, we have \(E_{i,0}[T] = F^{-1}(T_{zlb}) = T_p\) for each \(i \in [0, \alpha]\) and \(E_{i,0}[T] = F^{-1}(T_{zlb}) = T_o\) for each \(i \in (\alpha, 1]\) with \(T_{zlb} = T_p > T_o\). Odyssean agents are more optimistic than Delphic agents about the length of the trap and Odyssean agents expect a policy accommodation from period \(T_o\) to period \(T_{zlb}\) while Delphic agents do not expect any accommodation. It is now clear that, under this assumption, optimist (resp. pessimist) agents and Odyssean (Delphic) agents are indeed the same. We will use the two terms equivalently.

The effects of agents’ beliefs on consumption and inflation We first analyse the two polar cases where agents are all pessimists (\(\alpha = 1\)) or all optimists (\(\alpha = 0\)) and then present the effects of heterogeneity. In doing so, we take the central bank’s policy \(T_{zlb}\) as exogenous. In Section 4, we will study the optimal \(T_{zlb}\) for a given \(\alpha\).

Case \(\alpha = 1\). When all agents believe the policy is of the Delphic type, they all interpret the lift-off date as the expected end date of the trap. In such a case, agents have homogeneous beliefs that the trap will last for \(T_{zlb}\) periods and that the authority will keep interest rates at zero from \(t = 0\) until \(T_{zlb} - 1\) included.

The expected current consumption is given for each \(i\) by:

\[
\begin{align*}
\text{for } t \in (0, T_{zlb} - 1) : & \quad E_{i,0}[c_{i,t}] = \gamma^{-1}(\log R - \xi + E_{i,0}[\pi_{t+1}]) + E_{i,0}[c_{i,t+1}], \\
\text{for } t \geq T_{zlb} : & \quad E_{i,0}[c_{i,t}] = 0
\end{align*}
\]

(6a)

(6b)

where the expected inflation path is determined by the Phillips curve (2).

Figure 3 illustrates the path for aggregate consumption and inflation (thick dashed lines) in an example where the length of the trap is 12 quarters, the central bank announces it will keep interest rates at zero until \(T_{zlb} = 12\), and everybody understands that this lift-off date corresponds to the end of the trap. In that case, consumption and inflation increase monotonically and reach their steady state values after 12 quarters.

\(^8\)Refer to Bassetto (2015) for an analysis of optimal FG communication.
Case $\alpha = 0$. When instead all agents believe the policy is of the Odyssean type, they all interpret that the time until lift-off implies some periods of extra accommodation where the interest rate will be at zero after the end of the trap. In such a case, agents have homogeneous beliefs that the trap will last less than T_{zlb} periods, i.e. $E_i[0][T] = T_o < T_{zlb}$, and that the authority will maintain interest rates at zero from $t = 0$ to $T_{zlb} - 1$ included, even though this implies that inflation is above its steady state level between T_o and $T_{zlb} - 1$.

The expected current consumption is given for each i by:

$$
\begin{align*}
\text{for } t \in [0, T_o - 1]: & \quad E_i[0][c_{i,t}] = \gamma^{-1}(\log R - \xi + E_i[0][\pi_{t+1}]) + E_i[0][c_{i,t+1}], \\
\text{for } t \in [T_o, T_{zlb} - 1]: & \quad E_i[0][c_{i,t}] = \gamma^{-1}(\log R + E_i[0][\pi_{t+1}]) + E_i[0][c_{i,t+1}], \\
\text{for } t \geq T_{zlb}: & \quad E_i[0][c_{i,t}] = 0,
\end{align*}
$$

where, again, the inflation path is determined by the Phillips curve (2). In fact, an Odyssean policy amounts to stimulate current consumption promising lower short-term rates once the trap ends.

Figure 3 illustrates the resulting path for aggregate consumption and inflation (thick solid lines) in an example where the length of the trap is again 12 quarters but the central bank announces it will the liftoff date is $T_{zlb} = 17$. In contrast to the previous case, consumption and inflation converge to the steady state non-monotonically. In particular, once the trap is over at date $t = 12$, low interest rates generate a boom, which induces more current consumption. The steady state is reached later than in the previous case, but now the path remains on average closer to the steady state. Therefore, this policy can, through an optimal choice of T_{zlb}, deliver higher welfare than what following a conventional Taylor rule would imply.

However, as we already mentioned, once the trap ends at time $t = 12$, the boom is no longer socially desirable and the authority is tempted to renege on its promise and to set $r_t = \phi \pi_t$ onward, which corresponds to the time-consistent solution with perfect stabilization at steady state, after the end of the trap. Therefore, the second-best policy at the ZLB requires a commitment ability to solve for this time-inconsistency problem.

Case with heterogeneous beliefs, $0 < \alpha < 1$. We now describe a case where, although agents have homogeneous beliefs about the interest rate path and observe the current allocation, they still disagree on the length of the trap to the extent they disagree on the type of policy that is conducted by the monetary authority.
In the case at hand, all agents believe in the announcement that the lift-off date is a certain T_{lb}. As already discussed, this leads to agreement on the interest rate path for this given period of time. Also they entertain different beliefs on the reasons why the interest rate will be at zero for a given period of time. Agents may also observe the current distribution of beliefs but they have no reason to update their own opinion as the event on which they disagree (the policy commitment after the trap) did not realize yet; in this sense, they agree to disagree.

However, it is common knowledge that at time $E_{o,0}[T] = T_o$, which is, according to optimists, the date at which the trap ends, only one of the two types will be right. In case the trap is over at T_o optimists will be right and pessimists will be wrong. Otherwise, the opposite occurs. In either case, the heterogeneity of beliefs cannot last beyond T_o. All this is common knowledge among agents.

Such temporary disagreement has an impact on the current and expected allocations as established by the following proposition.

Lemma 3 For a given $\alpha \in [0, 1]$, the expected path for individual consumption is given respectively by (7) for the optimists, and (6) with for the pessimists, where the inflation path is for each agent i according to:

$$E_{i,0}[\pi_t] = \kappa E_{i,0} \left[\int_0^1 c_{j,t} di \right] + \beta E_{i,0} \left[\int_0^1 E_{j,t}[\pi_{t+1}] di \right],$$

where

for $t \in [0, T_o - 1]$: $E_{i,0}[c_{j,t}] = E_{j,0}[c_{j,t}]$ and $E_{i,0}[E_{j,t}[\pi_{t+1}]] = E_{j,0}[\pi_{t+1}]$, (9a)

for $t \geq T_o$: $E_{i,0}[c_{j,t}] = E_{i,0}[c_{i,t}]$ and $E_{i,0}[E_{j,t}[\pi_{t+1}]] = E_{i,0}[\pi_{t+1}]$, (9b)

where $j \in [0, 1]$.

The interpretation of the Lemma is intuitive. Each type understands that until date T_o no information can lead the other type to change her beliefs. Hence, in the short run, agents agree on the path of both inflation and consumption and they only disagree for periods after the date T_o, when optimists expect the end of the trap. At that date, as the truth finally unfolds, each type expects that the other will conform to her own expectations. After that date, optimists believe that monetary policy will engineer a boom resulting in higher inflation and higher consumption, and that pessimists will finally update their view. Conversely, pessimists expect that the economy will still be experiencing the negative shock and that optimists will update their views instead. In sum, disagreement on the type of policy conducted
by the authority tends to yield disagreement over medium-term inflation and consumption expectations, whereas it will have no impact on short-term expectations.

Figure 4 plots the dynamics of consumption and inflation when beliefs on the nature of policy are heterogeneous. In this example, the trap lasts again 12 quarters but 75 per cent of households are convinced that the monetary policy is Odyssean and the other 25 per cent believes that the policy is Delphic ($\alpha = .25$). With this fraction of optimists and pessimists, the optimal policy of the central bank is still to implement an Odyssean forward-guidance. Yet, to compensate for the presence of pessimists, it keeps interest rates at zero for more periods after the end of the trap (6 periods instead of 5 when $\alpha = 0$) and announces a later date of liftoff (at date $t = 18$ instead of 17 when $\alpha = 0$). This results in a larger and longer boom at the end of the trap.

Figure 4 also illustrates that the heterogeneity of beliefs about the effects of policy at the end of the trap induces different current individual actions despite every agent agrees on future allocations until the optimist lift-off date T_o: optimists consume more in the short run as they expect higher consumption and inflation than pessimists after T_o. Optimists expect pessimists to consume less than themselves in the short run as they know that pessimists do not share their beliefs. But they expect pessimists to revise their beliefs at date T_o and, then, to consume more in the future, catching up with optimists. This expected revision of pessimists’ beliefs contributes to the optimists’ anticipation of a future boom. Symmetrically, pessimists expect optimists to consume more than themselves in the short run, but they also expect them to revise their expectations downward at date T_o, pushing the economy to a new recession and a longer trap.

Let us also note that disagreement in the model concerns medium-term macroeconomic outcomes but agents agree on short-run variables. This echoes our findings that disagreement over 2 years ahead inflation and consumption increased well beyond its predicted values by 1 quarter ahead disagreement. Such heterogeneous beliefs about the future state of the economy affect date-0 behavior, in particular, agents who expect higher future consumption are also consuming more at date $t = 0$.

Finally, Figure 4 illustrates that, when beliefs are heterogeneous, date-based forward guidance is not as effective as in a world where all agents are optimistic, i.e. all agents consider that the central bank is pursuing an Odyssean policy. Pessimists attenuate the current impact of future monetary accommodation. More specifically, these agents are even overly pessimistic:
they expect worse fundamentals and consume less when the central bank follows an Odyssean policy compared with a Delphic policy.

As a result, the higher the fraction of pessimists, the lower the impact of a date-based forward guidance policy on the macro-economy. In fact, when the fraction of pessimists is high enough, the impact can become even negative, as pessimists misinterpret extra periods of accommodation for a more severe recession. We will discuss this issue formally in the next section. But, so far, what we obtained leads to the following claim:

Corollary 4. (Forward Guidance Puzzle) An announcement that coordinates agents’ agreement on an expected interest rate path may have limited or negative effects on current and expected aggregate economic activity and inflation.

This corollary captures how a mild or even detrimental reaction of individual forecasts about aggregate consumption and inflation to date-based forward guidance (see the appendix for additional empirical evidence) can coexist with a coordination on a long period of zero interest rates as stated by Fact 1. More generally, the mechanism that we emphasize can potentially explain why the effects US forward guidance policy on the economy has been much weaker than predicted by state of the art New Keynesian models as Del Negro et al. (2015) underlined.

In the end, the model that we have built replicates the main stylized facts outlined in Section 2. We next investigate how this potential heterogenous understanding of a forward guidance announcement may change the optimal design of monetary policy at the ZLB.

4 Optimal policy with heterogeneous beliefs

In this section, we take the point of view of a central bank that knows the true length of the trap T and has the commitment ability to implement Odyssean forward guidance. Our objective is to clarify how the coexistence of optimists and pessimists affects the design of an optimal Odyssean forward guidance. In other words, we will discuss how the Odyssean policy function $F_{\rho}(T)$ varies with α for given T; let us indicate this map by $T_{zlb}(\alpha, T)$. Importantly, we consider the share of optimists, α, as exogenous. We do not evaluate the desirability of announcements as such. We analyze how, conditional on making an announcement, the central bank’s optimal policy may change.

To determine optimal policy, conditional on its own belief on the length of the trap T, we
the authority chooses a lift-off date according to (3) that maximizes the expected utility of agents, taking as given agents’ optimal consumption, pricing decisions and beliefs. To avoid creating additional multiplicity of equilibria, we shall assume that the central banker knows \(\alpha \) and does not need to infer it.

In the appendix, we proceed similarly to Gali (2008) to approximate the resulting welfare objective by a quadratic function. In the special case where marginal utility is equally elastic to consumption and labor – i.e., agents’ coefficient of relative risk aversion \(\gamma \) equals the inverse of the Frisch elasticity of labor supply \(\psi \) – this function is:

\[
W = \int_0^1 W_i di = -\omega \theta^{-1} \int_0^1 E \left[\sum_{t=0}^{\infty} \beta^t \left(\lambda c^2_{t,i} + \pi^2_{t} \right) \right] di, \tag{10}
\]

which looks like the textbook welfare approximation typical of New-Keynesian models with homogeneous beliefs.\(^9\)

This particular specification is useful to obtain analytical result on the form of the optimal policy for a given length of the trap \(T \) and a fraction of pessimists \(\alpha \). This result is described in the proposition below. In the next paragraph, we numerically investigate the cases where \(\gamma \neq \psi \).

Proposition 1. In the special case where the coefficient of risk aversion equals the inverse of the Frisch elasticity, there exist two values \(\alpha \) and \(\bar{\alpha} \) where \(\alpha < \bar{\alpha} \) such that, for a given \(T \), the optimal policy \(T_{zlb}(\alpha, T) \) is:

- increasing in \(\alpha \), i.e. \(T_{zlb}(0, T) < T_{zlb}(\alpha', T) < T_{zlb}(\alpha'', T) \), for \(0 < \alpha' < \alpha'' < \alpha \);
- decreasing in \(\alpha \), i.e. \(T_{zlb}(\alpha', T) > T_{zlb}(\alpha'', T) \), for \(\bar{\alpha} < \alpha' < \alpha'' < \bar{\alpha} \);
- equal to \(T \), i.e. \(T_{zlb}(\alpha, T) = T \), for \(\bar{\alpha} < \alpha \leq 1 \).

Proof. See the appendix. \(\square \)

Proposition 1 states that the optimal number of periods of accommodation after the end of the trap is a non-monotonic function of the share of pessimists. This is because a coordination of beliefs on an extended period of low interest rates can be detrimental when misunderstood.

This result is due to the existence of an “excess pessimism” channel of forward guidance in presence of heterogeneous beliefs. By fixing a lift-off date beyond the end of the trap, the central bank induces pessimists to consume less as if the lift-off date is the end of the trap.

\(^9\)Our derivation in the special case is also close to the one of Bilbiie (2008) who looks to a case in which agents have limited asset market participation.
This occurs because pessimists interpret the policy as a signal that the trap is longer than the one that it actually is.10 As a result, the central bank can be better off not implementing an Odyssean forward guidance policy, no matter whether it is willing and able to commit to it.

On the other hand, when only a small share of agents misunderstand the Odyssean forward guidance, the central bank is better off opting for this policy. In such a case, a further drop in pessimists’ consumption (as they wrongly interpret additional periods of low interest rate as a sign of a longer trap) can be more than compensated by an increase in optimists’ consumption. Thus, when the fraction of pessimists is sufficiently low, the optimal policy calls for increasing the period of low interest rates T_{zlb}.

Our “excess pessimism” channel is different from the channel through which the revelation of inefficient shocks may generate a drop in welfare, as emphasized by Angeletos et al. (2016) and Wiederholt (2014). These papers investigate the effect of a release of information, we instead show how the optimal monetary policy changes conditional on making an announcement. In our case the drop of welfare signaled by an Odyssean policy may go beyond its perfect information level as agents may become excessively pessimists; this is why Delphic forward guidance maybe optimal although the authority has commitment ability.

Numerical illustration. Here, we present numerical simulations illustrating how results obtained in the special case where $\psi = \gamma$ extend to the general case $\psi \neq \gamma$.

Figure 5 plots the number of periods of extra accommodation as a function of the fraction of pessimists. We contrast the optimal policies after a large shock ($\xi = -0.01$) in the upper panel and after a small shock ($\xi = -0.007$) in the lower panel. In both cases we consider a shock lasting for 20 periods.

In each panel, there are three types of curves: solid, dashed and dotted. The solid line corresponds to the optimal policy when $\lambda = 0$. This is a limit case when the authority only cares about inflation. In this case, the relation is hump-shaped as described in Proposition 1: the presence of pessimists forces the central bank to extend its monetary stimulus, until the contractionary effects that are growing with the share of pessimist outweigh the benefits of additional stimulus. Then, the central bank starts reducing the length of its stimulus and eventually reaches a point where it prefers not to implement Odyssean forward guidance.

The dotted and dashed lines represent the optimal policy when $\lambda = 50$ (a case where

10The “excess pessimism” channel is not the only channel at work, but the most important. See our working paper version Andrade et al. (2018) for details.
the policy maker’s loss function puts a large weight on the variance of output gap) and \(\psi = \gamma \) or \(\psi = \gamma/4 \) respectively. The two curves illustrate that the optimal length of extra accommodation becomes a monotonically decreasing function of \(\alpha \) for a sufficiently high ratio \(\gamma/\psi \). This illustrates that, when deviating from the condition \(\psi = \gamma \), additional welfare cost terms appear due to heterogeneity and these terms reduce the incentive of the authority to generate disagreement by further reinforcing Odyssean forward guidance.

Finally, let us comment on how policy reactions vary with the size of the shock. *Ceteris paribus*, with larger shocks, the contractionary effect of pessimists increases. For sufficiently low fractions of pessimists, the optimal number of extra-accommodation after the end of trap increases when the shock is larger. Yet, the threshold value of (the fraction) of pessimists beyond which the central bank prefers not to implement Odyssean forward guidance decreases when the size of the shock increases.

5 Conclusion

In this paper, we have shown a form of disagreement among professional forecasters and households on future monetary policy in the period when the Fed implemented a date-based forward guidance policy. We also showed how disagreement may lead forward guidance announcements to be detrimental. The core of our analysis relies on the assumption that agents are unsure about the nature of announcements, whether they are Odyssean, i.e. a signal of a commitment to future accommodation, or Delphic, i.e. a signal that the economy will be forced at the ZLB by future fundamentals. In our benchmark model, policies are constrained by the ZLB during the trap. As a result, a pure Delphic or an Odyssean policy implies similar policy rates until the end of the trap, thus sustaining contrasting interpretations by private agents. A natural question is: how could then a central banker conducting Odyssean policy credibly signal the type of its policy by changing interest rates?

Before the end of the trap, signaling with policy rates may result impossible. On the one hand, credibility is hampered because a Delphic type could easily replicate the same signal without bearing the “time inconsistency” costs of forward guidance. On the other hand, signaling using interest rates would imply raising the current nominal rate, which may have extremely costly effects in comparison with the benefits of forward guidance. More generally, Barthélemy and Mengus (2016) show that signaling Odyssean forward guidance could only take place before the liquidity trap begins.
Signaling instruments other than rates may be available such as communication, transparency on central banks’ beliefs (e.g. by releasing forecasts) or unconventional monetary policy instruments (see Coenen et al., 2017, for suggestive evidence on the signaling effects of Quantitative Easing Programs is documented by).

One way to limit the fraction of pessimists would be to communicate on her type of policy separately from her views on fundamentals. As argued by Woodford (2012), the announcement of a clear commitment by the central banker can be a way to penalize ex post deviations from the central bank’s commitment (“to cause embarrassment” to borrow Woodford’s words) and, so, to convince pessimists to change their views on the type of policy. Announcing to target the price level or to conduct a forward guidance contingent on macroeconomic outcomes could go in that direction. Yet, such announcements can be also made by Delphic central bankers. And again, the latter will not bear the cost of reneging it while it pockets the ex-ante gains related to increasing the proportion of optimists. In the end, communication on commitment is plagued by cheap talk problems: to the extent that it costs nothing more to the Delphic central banker, such communication provides no information on types of policy. Bassetto (2015) analyses cheap talk aspects of forward guidance.

One other way is to increase the proportion of optimists is to communicate on fundamentals and to try to coordinate agents on shorter liquidity traps than the horizon of the zero interest rate policy. This can be achieved by releasing forecasts of macro-economic variables, as frequently done by central banks, or by committing to temporarily overshoot the inflation target (the Fed, the Bank of England and more recently the Bank of Japan have made such announcements). Yet, this policy can also be mimicked by Delphic central bankers and it involves only some unpalatable reputation costs when deviating ex post from the commitment.

Finally, quantitative policies and the purchase of long maturity bonds at very low rates, or supplying liquidity at long horizons at zero interest rates amount to “putting your money where your mouth is”. It can provide a strong signal on the central bank’s willingness not to raise policy rates in the future. Indeed, such policies can imply a cost for the central bank who deviates from its commitment: a rise in interest rate may lead to a depreciation of purchased assets and so to capital losses to the central bank (see Bhattarai et al., 2014, for an investigation of this mechanism). Yet, such a signaling device hinges on the central bank’s aversion for capital losses and the support of the fiscal authority.
Figure 1: Disagreement about future short-term interest rates.

The chart displays the evolution of a moving average over the last 4 quarters of the 75/25 inter-quantile range in the distribution of 1-quarter (plain line), 1-year (dotted/dashed line), and 2-year (dotted line) ahead individual mean point forecasts for 3-month T-Bill interest rate. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.
Figure 2: Excess disagreement about future consumption and inflation.

The Figure plots the residuals of a regression of the (log) disagreement on 2-year ahead consumption and inflation forecasts on the (log) disagreement on 2-year ahead short-term interest rate and disagreement on 1-quarter ahead inflation forecast. The regression is estimated on a pre-crisis sample (1982Q2-2008Q4). Circles give the bands of a 95% confidence interval that take into account autocorrelation and heteroscedasticity of the residuals. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.
Figure 3: The effect of Delphic (green) and Odyssean (blue) policies.

We consider a shock ($\xi = -0.01$) on the discount rate that lasts 12 quarters and implies a drop of consumption of 4% at impact in the absence of Odyssean forward guidance, which provides for 4 extra quarters of accommodation. We calibrate the reaction to inflation at $\phi = 1.5$. The discount factor β is such that the annual real interest rate equals 2% and the utility function is assumed to be CRRA $u(c) = c^{1-\gamma}/(1-\gamma)$ with $\gamma = 2$. The probability not to reset prices is .85, and the slope of the Phillips’ curve is then .027. We use $\psi = 2$ to compute the optimal policy, so as to have $\gamma = \psi$ as in our benchmark case.
We consider a shock ($\xi = -0.01$) on the discount rate that lasts 12 quarters and implies a drop of consumption of 4% at impact in the absence of Odyssean forward guidance, which provides for 4 extra quarters of accommodation. We calibrate the reaction to inflation at $\phi = 1.5$. The discount factor β is such that the annual real interest rate equals 2% and the utility function is assumed to be CRRA $u(c) = c^{1-\gamma}/(1-\gamma)$ with $\gamma = 2$. The probability not to reset prices is .85, and the slope of the Phillips’ curve is then .027. We use $\psi = 2$ to compute the optimal policy, so as to have $\gamma = \psi$ as in our benchmark case. The plain blue line is the actual path of inflation/aggregate consumption in the case of the optimal odyssean policy. The plain green line is the actual path of inflation/aggregate consumption in the case of a Delphic policy. The red dotted line is the expected path of inflation / individual consumption of optimists. The blue dotted line is the expected path of inflation / individual consumption of pessimists.

Figure 4: The effect of Odyssean (blue) with a fraction $\alpha = .25$ of pessimists.
Figure 5: We plot the optimal $T_{zb}(\alpha, 20) - 20$ for $\xi = -.007$ (lower panel) and $\xi = -.01$ (upper panel) for: $\lambda = 0$ with a solid line; $\lambda = 50$ and and $\gamma/\psi = 1$ with a dotted line; $\lambda = 50$ and and $\gamma/\psi = 4$ with a dashed line. λ is the weight on the average volatility of working hours in the loss function of the central bank. We calibrate the reaction to inflation at $\phi = 1.5$. The discount factor β is such that the annual real interest rate equals 2%, The probability not to reset prices is .85, and the slope of the Phillips’ curve is then .027.
Appendix A: Additional Evidence

Average expectations did not react much in the US SPF

Figure 6 displays the evolution of the average of individual short term interest rate forecasts 1 quarter, 1 year and 2 years ahead. Three specific subperiods are highlighted: 2008Q4-2011Q2 which corresponds to the time when the US economy reached the ZLB and the Fed conducted its “open-ended” forward guidance; 2011Q3-2012Q3 which corresponds to the “date-based” forward guidance period; and 2012Q4-2013Q2 which corresponds to a “state-based” forward guidance policy.

This figure shows that 1-quarter ahead short-term interest rate forecasts reached levels close to zero in 2009 that is when the US economy hit the ZLB. 1-year and 2-year ahead short-term interest rate forecasts were already low when date-based forward guidance policy started, but they went further down during that period to finally reach levels close to zero and comparable to the 1-quarter ahead forecasts.

As Figure 7 illustrates, over the same date-based forward guidance period, 1-quarter, 1-year and 2-year ahead consumption growth (resp. inflation) forecasts only slightly decreased (resp. increased). This makes a preliminary fact.

Fact 0. Date-based forward guidance was coincident with a drop in the mean forecasts of the short-term nominal interest rates to historically low (and close to zero) levels up to 2 years, a limited increase in the average forecast of inflation and a limited decrease in the average forecast of consumption growth.

These patterns are reminiscent of results stressed in previous studies documenting the reaction of macroeconomic expectations to various forward guidance announcements (Campbell et al., 2012; Del Negro et al., 2015; Campbell et al., 2016): such policy lowered expected future short-term interest rates but the reaction of inflation, output or consumption growth were much smaller and sometimes negative. One reading is that forecasters had a Delphic interpretation of forward guidance: announcements of future low interest rates were interpreted as signalling worse future macroeconomic conditions. We show that this is consistent with agents interpreting differently the same announcement.

\[\text{11-year ahead and 2-year ahead forecasts provided here are not directly comparable. The former correspond to an annualized quarter-over-quarter percentage change expected in four quarters. The later correspond to an annual average percentage change expected over the next calendar year.}\]
Figure 6: Average of individual short-term interest rate forecasts.

The chart displays the evolution of a moving average over the last 4 quarters of the average of individual forecasts of the 1-quarter (plain line), 1-year (dashed/dotted line), and 2-year (dotted line) ahead individual mean point forecasts for 3-month T-Bill interest rate. 1-year ahead forecasts are ‘fixed horizon’ forecasts and correspond to the quarterly average (annualized) rate expected in four quarters. 2-year ahead forecasts are ‘fixed date’ forecasts and correspond to the annual average rate expected over the next calendar year. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.
Figure 7: Average of individual consumption growth and inflation forecasts.

The figure shows the evolution of a moving average over the last 4 quarters of the average of individual forecasts of 1-quarter (plain line), 1-year (dashed/dotted line), and 2-year (dotted line) ahead individual mean point forecasts for real consumption growth and CPI inflation. 1-year ahead forecasts are 'fixed horizon' forecasts and correspond to annualized quarter-over-quarter percent changes of the real personal consumption expenditure and the consumption price index level expected in four quarters. 2-year ahead forecasts are 'fixed date' forecasts and correspond to the annual average percent changes in the real personal consumption expenditure and consumption price index expected over the next calendar year. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.

Additional evidence: Household survey

We also investigate how expectations of US households evolved when date-based forward guidance was conducted by exploiting the Michigan Survey of Consumers. Although data characteristics
prevents us to conduct exactly the same analysis than for the SPF, individual households’ expectations observed in Michigan Survey of Consumers feature comparable patterns over the same period and show that the heterogeneity in expectations translated in heterogeneous decisions.

More specifically, we analyse households’ expectations about (i) the evolution of interest rates over the next 12 months (increase, stay constant, decrease), (ii) the evolution of prices over the next 12 months (average inflation rate), (iii) whether it is a good time to buy durables (good, neutral, bad) and (iv) the expected overall aggregate business conditions over the next 12 months (good, neutral, bad).

Each month, about 500 households are surveyed. The sample is designed to be representative of the US population. 60% of individuals that are first time respondents to the survey. Due to this repeated cross-section structure it is not possible to compute revisions of forecasts between 2 subsequent survey rounds for the whole sample of household surveyed. 40% of households that are interviewed twice but with a 6 months period between the two interviews. In the appendix, we analyse individual revisions based on this subsample. Moreover, several questions asked to households call for qualitative rather than quantitative answers. These data limitations prevent us to conduct an analysis as detailed as the one we can conduct with the SPF. The other way around, the question on current durable good consumption in the Michigan survey as no equivalent in the SPF. As Bachmann et al. (2015) emphasize, consumption of durable goods follows total consumption so that answers to this question is a good proxy for the current total consumption decisions.

We start with households’ expectations of future interest rates. Figure 8 plots the share of respondents anticipating that interest rates will stay constant over the next 12 months over a 2002-2014 sample. The chart underlines that this share jumped to levels above 50% during the date-based forward guidance period. So the majority of households in the Michigan Survey of Consumers interpreted forward guidance announcements as indicating that interest rate will not increase (at least) over the next year. This complements the results of Carvalho and Nechio (2014). They show that, in normal times, some households in the Michigan survey understand monetary policy: they adjust their interest rate expectations in a way that is consistent with a Taylor rule and their views on the macroeconomic outlook. We find that a substantial share of households reports interest rate forecasts consistent with the date-based forward guidance policy implemented at the ZLB.

In a second step, we analyze the heterogeneity of expectations across surveyed households. We split the sample of respondents expecting stable or lower interest rates into three categories: optimists if they expect better aggregate business conditions and have inflation expectations above the average; pessimists if they expect worsening business conditions and have inflation expectations below average; and others. Table 2 reports the average expectations of each of these groups observed in the month following the three date-based forward guidance announcements of August 2011, January 2012 and September 2012. The results reveal that among households who anticipated stable or lower interest rates, the ones who expected higher inflation and better economic conditions also considered that the time was more favorable to purchase durable goods. By contrast, pessimists expect lower inflation and a smaller fraction among them consider that it is time to purchase durable goods.

12 This surge in the proportion of households expecting that interest rate will not increase is mainly driven by households expecting interest rates will stay constant which reaches an all-time high (above 50%) during the date-based forward guidance. This contrasts with the 2009 episode where the high share of households foreseeing that interest rate will not increase is mostly due to a large majority of people expecting a drop in future interest rates.
Note that observing a fraction of optimistic households who declare to consume more when they anticipate higher inflation and better economic conditions does not contradict the results in Bachmann et al. (2015) who find that, on average, during the ZLB period, households who report higher inflation expectations in the Michigan survey are likely to consume less. Moreover, in the Appendix, we also report results that are very similar to theirs over the date-based forward guidance episode. Namely, we drop the expected inflation criteria in the definition of optimistic households and consider the larger group of agents who expect an improvement in future activity. The results show that this broader class of optimistic households is more likely to purchase durable goods but also expect lower inflation than the average household. These optimists behave like in Werning (2012)’s model of forward guidance in which such policy increases consumption today by generating expectations of a boom in activity tomorrow. Finally while this broader class of optimists by definition accounts for a larger fraction of the sample of households surveyed, it does not represent the whole sample: again optimists coexisted with pessimists during the period of date-based forward guidance.

<table>
<thead>
<tr>
<th>Optimists</th>
<th>Pessimists</th>
<th>Pessimists and others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averages observed in 2011m9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>5%</td>
<td>50%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.50</td>
<td>.27</td>
</tr>
<tr>
<td>Inflation</td>
<td>6.64</td>
<td>1.77</td>
</tr>
<tr>
<td>Averages observed in 2012m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>13%</td>
<td>28%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.55</td>
<td>.30</td>
</tr>
<tr>
<td>Inflation</td>
<td>5.50</td>
<td>1.37</td>
</tr>
<tr>
<td>Averages observed in 2012m10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.46</td>
<td>.24</td>
</tr>
<tr>
<td>Inflation</td>
<td>7.34</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Table 2: Average of forecasts across groups of households.

This table computes the cross-sectional mean for current durable consumption (qualitative answers) and expected inflation over next 12 months (quantitative answers) when forecasters are sorted according to their expected business conditions and nominal interest rate over next 12 months. Pessimists expected lower inflation than the cross-sectional mean and had a negative view of the business/financial conditions over the next 12 months. Others include all households except optimists. All forecasters considered expect constant or decreasing nominal interest rates over the next 12 months.

Overall, during the period of date-based forward guidance, among households expecting interest rates not to increase over the next 12 months, the ones anticipating better economic conditions and higher inflation were more likely to purchase durable goods than the ones anticipating worse economic conditions and lower inflation.

Evidence with a broader definition of optimists households Only a few households in the Michigan survey have expectations that are consistent with what New-Keynesian models predict the impact of forward guidance policy should be: they foresee stable or lower interest rates, more inflation, a boom in future activity and therefore want to consume more today. That their number is
quite limited is consistent with the evidence in Bachmann et al. (2015). These authors showed using data from the Michigan survey that, on average, when the US economy was at the ZLB, households who expected higher inflation expectations also considered the time as less favorable to consume.

Werning (2012) showed that forward guidance does not require that agents expect higher future inflation (hence lower future real interest rates) to have a positive impact on consumption today. Such policy can be effective if agents only expect a future boom. This suggests to conduct the same analysis than before but with a broader definition of optimistic and pessimistic households that does not depend on their inflation expectations. More specifically we sort households into two categories only: optimists if they expect better future conditions and pessimists otherwise. Table 3 shows the average of macro expectations of these two groups observed at the dates following date-based forward guidance announcements. Three comments can be made. First, two views (an optimistic and a pessimistic ones) about the macroeconomic outlook prevailed within the group of households who foresaw stable or lower interest rates. Second, there is a now substantial number, sometimes a majority, of optimistic households, who have expectations consistent with the effects of forward guidance as emphasized in Werning (2012): after the forward guidance announcements they expected better future economic conditions and were likely to consume more today. Third, and again consistent with Bachmann et al. (2015)’s results aforementioned, households who expected better economic conditions in the future and consumed more after date-based forward guidance, were also expecting lower inflation on average.

<table>
<thead>
<tr>
<th></th>
<th>Optimists</th>
<th>Pessimists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averages observed in 2011m9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>14%</td>
<td>86%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.64</td>
<td>.21</td>
</tr>
<tr>
<td>Inflation</td>
<td>2.95</td>
<td>3.90</td>
</tr>
<tr>
<td>Averages observed in 2012m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.56</td>
<td>.19</td>
</tr>
<tr>
<td>Inflation</td>
<td>2.45</td>
<td>3.99</td>
</tr>
<tr>
<td>Averages observed in 2012m10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.48</td>
<td>.17</td>
</tr>
<tr>
<td>Inflation</td>
<td>2.81</td>
<td>4.69</td>
</tr>
</tbody>
</table>

Table 3: Average of forecasts across groups of households.

This table computes the cross-sectional mean for current durable consumption (qualitative answers) and expected inflation over next 12 months (quantitative answers) when forecasters are sorted according to their expected business conditions and nominal interest rate over next 12 months. Optimistic forecasters had a positive view of the business/financial conditions over the next 12 months. Pessimists had a negative view of the same business/financial conditions. All forecasters considered expect constant or decreasing nominal interest rates over the next 12 months.
Evidence using revisions in households’ expectations Some households in the Michigan survey are sampled twice with a 6 month interval. We exploit this panel dimension to control for individuals’ fixed effects. Table 4 below shows that optimists households have both higher revision of inflation expectations and willingness to buy durable goods after FG announcements.

<table>
<thead>
<tr>
<th></th>
<th>Optimists</th>
<th>Pessimists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averages observed in 2011m9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>4%</td>
<td>58%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.00</td>
<td>-.19</td>
</tr>
<tr>
<td>Inflation</td>
<td>-1.75</td>
<td>-2.71</td>
</tr>
<tr>
<td>Averages observed in 2012m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>14%</td>
<td>28%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.32</td>
<td>.25</td>
</tr>
<tr>
<td>Inflation</td>
<td>-1.24</td>
<td>-2.29</td>
</tr>
<tr>
<td>Averages observed in 2012m10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of respondents</td>
<td>9%</td>
<td>31%</td>
</tr>
<tr>
<td>Good times for durable</td>
<td>.11</td>
<td>.03</td>
</tr>
<tr>
<td>Inflation</td>
<td>3.25</td>
<td>-1.55</td>
</tr>
</tbody>
</table>

Table 4: Average of forecasts revisions across groups of households surveyed twice.

This table computes the cross-sectional mean for revisions in current durable consumption (qualitative answers) and revisions in expected inflation over next 12 months (quantitative answers) for forecasters surveyed twice (with a 6 months interval). Forecasters are sorted according to their expected business conditions and nominal interest rate over next 12 months (at the time of the second survey). Pessimists expected lower inflation than the cross-sectional mean and had a negative view of the business/financial conditions over the next 12 months. Others include all households except optimists. All forecasters considered expect constant or decreasing nominal interest rates over the next 12 months. All forecasters considered expect constant or decreasing nominal interest rates over the next 12 months.
Additional evidence: patterns in various measures of macroeconomic uncertainty

In this paragraph, we investigate whether forward guidance has had effects on another channel than just the first moments namely a reduction in uncertainty. Figure 9 plots three different recent measures of uncertainty between 2002 and 2016: the CBOE financial market volatility index (VIX), the macroeconomic uncertainty measure developed by Jurado et al. (2015) (JLN), the economic policy uncertainty measure developed by Baker et al. (2016) (BBD). Figure 10 shows two additional measures that are derived from subjective probability distribution observed in the survey of professional forecasters: the probability of a drop in the level of real GDP in 4 quarters (REC) and the conditional variance of inflation 4 quarters ahead (VIN). A first observation is that, consistent with e.g. Bianchi and Melosi (2015b), macroeconomic uncertainty increased as the economy hit the ZLB and the usual monetary policy stabilisation instrument has been lost. Yet, when the Fed switched to date-based forward guidance, there is no clear common pattern in the three measures of uncertainty. The index by Jurado et al. (2015) remained almost unaffected, while economic policy uncertainty measure and the VIX both peaked around the time of the first announcement. In sum, this evidence is not consistent with a systematic reduction of uncertainty due to date-based forward guidance announcements.13

We also checked that the fact that date-based forward guidance is associated with an increase in disagreement about medium-run forecasts of consumption growth and inflation, illustrated in Figure 2, does not primarily result from variations in macroeconomic uncertainty.

We regressed the disagreement about 2-year ahead forecasts of consumption (resp. inflation) on the disagreement about 2-year ahead forecasts of short-term nominal interest rates estimated on a pre-crisis sample, controlling for the disagreement about 1-quarter ahead consumption and inflation forecasts as previously, as well as for four different measures of uncertainty: the JLN measure of macroeconomic uncertainty, the BBD measure of economic policy uncertainty, and the 2 SPF based measures REC and VIN.

Figures 11 and 12 display the residuals from these regressions. They show that the beginning of the date-based forward guidance policy is again a striking outlier: controlling for fundamental uncertainty, disagreement about future inflation should have been significantly lower given how much agents agreed on future short-term interest rates. So, changes in uncertainty are not the main explanation for why the normal time correlation between disagreement about future interest rates and disagreement about future fundamentals disappears at the time of forward guidance.

13Note, in contrast, that state-contingent forward guidance has had a large negative impact on the economic policy uncertainty measure by Baker et al. (2016). As a result, the reduction in uncertainty channel seems to be more relevant for state-contingent than for date-based forward guidance.
Figure 8: Interest rate expectations in the Michigan survey of households.

The chart displays the evolution of the share of respondents to the survey who thought that over the next 12 months, interest rates will increase (solid line), stay constant (dashed pointed line) or decline (dashed line).
Figure 9: Measures of uncertainty.

The chart displays the evolution of 3 different measures of uncertainty: the CBOE financial market volatility index (VIX, blue line), the macroeconomic uncertainty measure developed by Jurado et al. (2015) (JLN, dark line), the economic policy uncertainty measure developed by Baker et al. (2016) (BBD, red line).
Figure 10: Survey based measures of uncertainty.

The chart displays the evolution of 2 different measures of uncertainty based on survey of professional forecasters: the cross-sectional average of the probability of a recession (REC, dashed line) and the cross-sectional average of the conditional variance of inflation 1-year ahead derived from the individual subjective probability distribution forecasts (VIN, plain line).
Figure 11: Excess disagreement about future consumption and inflation, controlled by uncertainty.

The Figure plot the residuals of a regression of the (log) disagreement on (1-year and 2-year ahead) inflation and consumption forecasts on the (log) disagreement on (1-year and 2-year ahead) short-term interest rate and disagreement on 1-quarter ahead inflation forecast and the uncertainty measure (JLN : Jurado et al. (2015) and EPU : economic policy uncertainty measure developed by Baker et al. (2016)). The regression is estimated on a pre-crisis sample (1982Q2-2008Q4). Circles give the bands of a 95% confidence interval that take into account autocorrelation and heteroscedasticity of the residuals. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.
Figure 12: Excess disagreement about future consumption and inflation, controlled by uncertainty.

The Figure plots the residuals of a regression of the (log) disagreement on (1-year and 2-year ahead) inflation and consumption forecasts on the (log) disagreement on (1-year and 2-year ahead) short-term interest rate and disagreement on 1-quarter ahead inflation forecast and two measures of uncertainty derived from the SPF: REC and VIN. The regression is estimated on a pre-crisis sample (1982Q2-2008Q4). Circles give the bands of a 95% confidence interval that take into account autocorrelation and heteroscedasticity of the residuals. The shaded areas correspond to the periods of the ZLB and “open-date” forward guidance, “date-based” forward guidance and the “state-contingent” forward guidance.
Appendix B: Model Derivation

In this appendix, we micro-founded the linear model that we use in the core of this paper.

Environment

The economy is populated by a continuum of households, firms and the central bank. Time is discrete and indexed by \(t \in \{0, \ldots, \infty\} \).

Household. The household family is constituted by a continuum of agents of mass one indexed by \(i \in [0, 1] \). Each agent decides how much to work, consume and save in order to maximally contribute to the household welfare:

\[
U = \int_{0}^{1} \sum_{t=0}^{\infty} \beta^t \xi_t \left(\frac{C_{i,t}^{1-\gamma} - 1}{1 - \gamma} - \frac{L_{i,t}^{1 + \psi}}{1 + \psi} \right) di,
\]

where \(C_{i,t} \) and \(L_{i,t} \) are respectively consumption and labor supply of agent \(i \) in period \(t \). The parameter \(\beta \in (0, 1) \) is a discount factor, the parameter \(\gamma > 0 \) is the inverse of the inter-temporal elasticity of substitution, and the parameter \(\psi \geq 0 \) is the inverse of the Frisch elasticity of labor supply. The variable \(\xi_t \) is a preference shock discussed below.

Each agent manages a portfolio representing a fraction of the household wealth. Between periods \(t \) and \(t + 1 \), agent \(i \) deals with the following flow budget constraint:

\[
B_{i,t} = R_{t-1}B_{i,t-1} + W_tL_{i,t} + D_t - P_tC_{i,t} + Z_{i,t},
\]

where \(B_{i,t} \) are bond holdings of the agent between periods \(t - 1 \) and \(t \), \(R_{t-1} \) is the gross nominal interest rate on bond holdings between periods \(t - 1 \) and \(t \), \(W_t \) is the nominal wage rate in period \(t \), \(D_t \) is the difference between nominal profits received and nominal lump-sum taxes paid, by each agent in period \(t \) (we assume here diffuse ownership), and \(P_t \) is the price of the final good in period \(t \). The agent can borrow (formally, bond holdings can be negative), but the household is not allowed to run a Ponzi scheme. Finally, the term \(Z_{i,t} \) denotes a nominal intra-household transfer by agent \(i \).

Intra-Household risk sharing. Each period is divided into three stages. In the first stage, current shocks hit and agents observe them. At this stage agents form their beliefs on the state of the world. In the second stage of each period, agents can implement a feasible transfer plan in which each agent \(i \in [0, 1] \) at date \(t \) contributes by an amount \(Z_{i,t} \) and such that:

\[
\int_{0}^{1} Z_{i,t} di = 0.
\]

only if every agent agrees on it. Without loss of generality,\(^{14}\) we assume that when no unanimity is reached, then no transfers are made; in such a case each agent owns the wealth resulting from her own portfolio management. Let us therefore introduce the following formal definition.

\textbf{Definition 3.} An implementable transfer plan at time \(t \) is a feasible transfer plan \(\{\hat{Z}_{i,t}\}_{i=0}^{1} \) such that

\[
E_{t,i}[U_t|\{\hat{Z}_{i,t}\}_{i=0}^{1}] \geq E_{t,i}[U_t|\{Z_{i,t}\}_{i=0}^{1}],
\]

for each \(i \in [0, 1] \) and each feasible transfer plan \(\{Z_{i,t}\}_{i=0}^{1} \).

\(^{14}\)To explain why is without loss of generality, we need to introduce a bit more structure. See footnote 15 below.
In the last stage, once intra-household wealth transfers are carried out, each agent decides on her own labor supply and consumption, based on their own individual beliefs and taking other agents’ decisions as given. The crucial assumption we are making here is that agents cannot commit on future transfers: each period they decide under discretion. We also assume that the whole mechanism is common knowledge.

Firms. Production is implemented in the context of a standard monopolistic competition environment. The final good is produced by competitive firms using the technology:

\[Y_t = \left(\frac{\int Y_{j,t}^{\theta-1}/d_j}{\theta} \right)^{\theta/(\theta-1)}. \]

\(Y_t \) denotes output of the final good and \(Y_{j,t} \) denotes input of intermediate good \(j \). The parameter \(\theta \) is the elasticity of substitution between intermediate goods. Final good firms have perfect information and fully flexible prices. Profit maximization of firms producing final goods implies the following demand function for intermediate good \(j \):

\[Y_{j,t} = \left(\frac{P_{j,t}}{P_t} \right)^\theta Y_t, \quad (14) \]

where \(P_{j,t} \) is the price of intermediate good \(j \) and \(P_t \) is the price of the final good. Furthermore, the zero profit condition of firms producing final goods implies \(P_t = \left(\int P_{1,t}^{1-\theta} d_j \right)^{1/(1-\theta)}. \) Each intermediate good \(j \) is produced by a monopolist using the linear technology:

\[Y_{j,t} = L_{j,t}, \quad (15) \]

where \(Y_{j,t} \) is output and \(L_{j,t} \) is labor input of this monopolist.

Monopolists producing intermediate goods are subject to a price-setting friction as in Calvo (1983). Each monopolist can optimize its price with probability \(1 - \chi \) in any given period. Finally, we assume that firms’ stocks are held by households in equal shares.

Intra-household risk-sharing

In this subsection, we derive our result on endogenous risk sharing. Disagreement has major consequences for the dynamics of intra-family transfers. At the second stage of each period, agents need to decide on the wealth transfers. In the absence of disagreement, this would optimally result in an even distribution of wealth. Yet, the type of policy will be revealed only at a future date, let us sat \(\hat{T} \) (in the simplified version of our model at \(p_d \rightarrow 1 \) such date is \(T_0 \)). Before that date, agents have different beliefs on the future course of the economy and so on which transfer plan maximizes family welfare; this prevents transfers from happening before the truth unfolds. In any case, all agents anticipate that they will share their wealth in the future as soon as they have evidence on which they cannot disagree any longer. This implies that no transfer plans can be implemented before date \(\hat{T} \).

The following proposition states this formally.

Proposition 2. Consider the case of heterogeneous beliefs before \(\hat{T} \), then the only equilibrium sequence of implementable plans of transfers \(\{Z_{i,t}^*\}_0^\infty \) is the one providing for \(Z_{i,t}^* \) \(1 \) at each \(t \neq \hat{T} \) and \(\{Z_{i,\hat{T}}^*\}_0^1 \) such that

\[U_c(C_{i,t}) = U_c(C_{j,t}) \text{ for } t = \hat{T}, \quad (16) \]

namely, the marginal utility of consumption is equal across agents at the time \(\hat{T} \) when heterogeneity in beliefs vanishes, which implies \(B_{i,t} = B_{j,t}, \forall (i,j) \in [0,1]^2 \) for \(t \geq \hat{T} \).
Proof. The proof is organized in five steps. First step. Consider an economy with homogeneous agents at the date $T_{zlb} + 1$ just after the end of the zero-rate period (no matter how it gets fixed), so that the steady state can be restored. Because of Ricardian equivalence holds, the present value of their life-utility is the same irrespective of the stock of bonds they hold at that time, which is a legacy of the realized states of the words. Therefore, because of the permanent income hypothesis, the level of homogenous individual consumption $C_{T_{zlb}+1} = \bar{C}$ is pin down only by the forward evolution of the economy that will remain at steady state. Second step. At time T (given the nature of our shock $T \leq T_{zlb} + 1$), as soon as agents become homogeneous, they would agree on a plan of transfers $\{Z^*_i,t\}_{i=0}^\infty$ such that $B_{o,t} = B_{p,t}$, that is, their stock bonds is equalized. In fact, as a consequence, consumption is equalized and so $U_{C_o,T} = U_{C_p,T}$, that is, social welfare is maximized. After that period, irrespective of whether or not the economy is already at steady state (preference shock does not hit), individual consumption will converge to $C_{T_{zlb}+1} = \bar{C}$ because of what argued in the first step. Third Step. Consider now the sequence of transfers $\{\{Z^*_i,t\}_{i=0}^\infty\}$, since step two and three are common knowledge, there is only one equilibrium consumption path associated to each state of the word as described in the proposition. Fourth step. Different transfers plans, which modify agents’ path of consumption, imply, because of the permanent income hypothesis, different level of consumption at steady state. Given that agents anticipate step 2, no plan of this kind can be implemented. In other words, agents anticipate that at time t they will agree to equalize their wealth so that \bar{C} will be their steady state consumption that in turn determines the unique consumption path described at step three. Fifth step. Among all the transfer plans that can engineer an equalization in the stock of bonds at time T onwards, $\{Z^*_i,t\}_{i=0}^\infty$ is the only one that is implementable because before time T agents disagree on the actual transfer that will equalize bonds holding at time T as they expect different real interest rates paths, after time T they agree on no transfers.

As no transfers are made during the period of the trap, the two types of agents then consume according to their beliefs, managing the share of wealth that they hold at the beginning of the trap. It is worth to remark that proposition 2 relies on the assumption that households cannot commit to future transfers. As a consequence, agents of each type anticipate that, whatever their financial position, intra-household wealth will be equalized at a future date, when the truth will eventually unfold. Before that date, intra-family transfers, even if they were implemented, cannot change agents’ perceptions of their permanent income, and so cannot affect current consumption-saving choices. In other words, as they expect wealth to be equalized in the future – even though not at the same level – but anticipate different paths of real interest rates, pessimists and optimists select different paths of consumption. If different transfers are implemented, pessimists and optimists both modify their portfolio choices, keeping consumption paths unmodified and anticipating future transfers.

Finally, once we obtain 2, we can log-linearize our model around the unique steady state where the ZLB is not binding.

15 With different opinions about which plan achieves the first best, agents cannot implement any transfer plan. However, this rule has the mere role of selecting a unique feasible plan when agents disagree. That is, another backup rule would not change the results. For example, we could have equally assumed that, when agents disagree, a dictator decides on their transfers. Given that the dictator cannot enforce future transfers (no commitment), agents commonly know that, from some future date onward, they will agree again, and so, their wealth will be equalized. In this case, the dictator’s transfers cannot affect the perceived permanent income of an agent, and so cannot change agents consumption-saving plans.
Aggregate Behavior and the New-Keynesian Phillips Curve

Following standard steps, we can write down the log-linearized versions of optimality conditions as:

\[c_{i,t} = -\frac{1}{\gamma} (E_{i,t+1} \xi + r_t - E_{i,t} \pi_{t+1}) + E_{i,t} c_{i,t+1}, \] (17)

\[\gamma c_{i,t} + \psi_{i,t} = w_t - p_t \] (18)

Notice that that \(\xi_t < 0 \) in the trap and \(\xi_t = 0 \) out of the trap. This means that an exit from the trap, say at time \(t + 1 \), implies \(\xi = E_{i,t+1} \xi_t - \xi_t > 0 \). So, the term \(\xi = E_{i,t+1} \xi_t - \xi_t \) is positive at the time of reverting to normal times and equals 0 otherwise. As a result, the Euler equation (17) implies that consumption decreases at the beginning of the liquidity trap before it gradually increases during the trap.

Aggregate behavior. Assuming that \(\xi \) can be anticipated a period in advance and by solving forward, we obtain that individual consumption equals:

\[c_{i,t} = -\frac{1}{\gamma} E_{i,t} \left[\sum_{\tau=t}^{\infty} (r_\tau - \pi_{\tau+1} + \xi_{\tau+1} - \xi_\tau) \right] \]

and aggregate consumption equals:

\[c_t = -\frac{1}{\gamma} E_t \left[\sum_{\tau=t}^{\infty} (r_\tau - \pi_{\tau+1})_{\tau+1} + \xi_{\tau+1} - \xi_\tau \right] \]

Notice that as long as agents do not disagree on the size of the shock (this is the case as they observe it), but only on the future date on which it will unfold, it enters as a fix wedge in the IS curve. This wedge will disappear only at the optimistic date when agents will discover the truth.

New-Keynesian Phillips Curve. The optimal price setting for producer \(j \) is given by:

\[x_{j,t} = (1 - \chi) E_{i,t} \left[\sum_{\tau=t}^{\infty} (\chi \beta)^{\tau-t} w_\tau \right] \]

as standard in the sticky price literature. Aggregating over producers yields:

\[x_t = (1 - \chi) w_t + \chi \beta \int E_{i,t} x_{i,t+1} di, \]

which is a standard realtion. We obtain the New-keynesian Phillips Curve in the presence of heterogeneous beliefs as follows. By defining \(\Delta_t = \int E_{i,t} x_{i,t+1} di - E_t x_{t+1} \), we can write \(x_t \) recursively as:

\[x_t = (1 - \chi) w_t + \chi \beta E_t x_{t+1} + \chi \beta \Delta_t \]

At the same time, \(x_t = \frac{p_t - \chi p_{t-1}}{1 - \chi} \) and so, we can write

\[p_t - \chi p_{t-1} = (1 - \chi)(1 - \chi \beta) w_t + \chi \beta E_t (p_{t+1} - \chi p_t) + (1 - \chi) \chi \beta \Delta_t \]

Thus, by noticing that \(\pi_t = p_t - p_{t-1} \), we obtain:

\[\pi_t = (1 - \chi) \left(\frac{1 - \chi \beta}{\alpha} \right) (w_t - p_t) + \beta E_t \pi_{t+1} + (1 - \chi) \beta \Delta_t \]
By definition, \(\Delta_t \equiv \int E_{i,t} x_{i,t+1} \, di - E_t x_{t+1} \) and \(x_{i,t} \) is a function of current and future wages \((w_{r,s})\).

As a result, we can rewrite \(\Delta_t \) as follows:

\[
\Delta_t = (1 - \chi \beta) \sum_{\tau=0}^{\infty} (\chi \beta)^\tau \int E_{i,t} \left(w_{t+r+1} - \int E_{i,t+1} [w_{t+r+1}] \, di \right) \, di
\]

which equals 0 in this case, yielding the New Keynesian Phillips Curve

\[
\pi_t = \frac{(1 - \chi)(1 - \chi \beta)}{\chi} (w_t - p_t) + \beta E_t \pi_{t+1},
\]

which is identical to the one under homogeneous beliefs. This result crucially relies on the assumption that producers observe all current variables, wage included, and that there is a unique labor market. As a result, it is common knowledge that there will be no aggregate forecast error on the wage neither at present nor at a future date, which makes \(\Delta \) nil.

Appendix C: Optimal Policy

The welfare function

To determine optimal policy, the central bank’s problem is to maximize the expected utility of agents:

\[
U = \int_0^1 \sum_{t=0}^{\infty} \beta^t e^{\xi_t} \left(C_{i,t}^{1-\gamma} - \frac{L_{i,t}^{1+\psi}}{1+\psi} \right) \, di,
\]

where \(C_{i,t} \) and \(L_{i,t} \) are respectively consumption and labor supply of agent \(i \) in period \(t \). The parameter \(\beta \in (0, 1) \) is a discount factor, the parameter \(\gamma > 0 \) is the inverse of the inter-temporal elasticity of substitution, and the parameter \(\psi \geq 0 \) is the inverse of the Frisch elasticity of labor supply. The variable \(\xi_t \) is a preference shock as discussed above.

We show that proceeding similarly to Gali (2008) (page 87), we can approximate the per period utility of each agent around a steady state as:

\[
\mathbb{W}_i \equiv \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t U_{i,t} - U \right] \simeq \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t U_{i,t} \left(C_{i,t} + \frac{1-\gamma}{2} c_{i,t}^2 \right) + U_l \left(l_{i,t} + \frac{1+\psi}{2} l_{i,t}^2 \right) \right].
\]

For the sake of notational convenience, let us denote by \(i = p \) the pessimist type and by \(i = o \) the optimist type. The next step is to use the fact \(L_t = Y_t \int (P_{j,t}/P_t)^{-\theta} \, di \) to derive

\[
(1 - \alpha) l_{o,t} + \alpha l_{p,t} = (1 - \alpha) c_{o,t} + \alpha c_{p,t} + d_t
\]

where the last price dispersion term is derived from as a direct implication of the Calvo assumption (for a proof see Woodford (2003) p.399) as being proportional to the square of inflation \(\pi_t^2 \). Given the first order condition on labor supply, and in particular because of the assumption of homogeneous labor market (18), we have that \(\gamma c_{o,t} + \psi l_{o,t} = \gamma c_{p,t} + \psi l_{p,t} \) that is:

\[
l_{p,t} - l_{o,t} = -\frac{\gamma}{\psi} (c_{p,t} - c_{o,t}).
\]

Therefore we can rewrite

\[
l_{o,t} + \alpha (l_{p,t} - l_{o,t}) = c_{o,t} + \alpha (c_{p,t} - c_{o,t}) + d_t,
\]

\[
l_{p,t} + (1 - \alpha) (l_{o,t} - l_{p,t}) = c_{p,t} + (1 - \alpha) (c_{o,t} - c_{p,t}) + d_t,
\]
or

\[l_{o,t} = c_{o,t} + \alpha \left(1 + \frac{\gamma}{\psi} \right) (c_{p,t} - c_{o,t}) + dt, \]
\[l_{p,t} = c_{p,t} + (1 - \alpha) \left(1 + \frac{\gamma}{\psi} \right) (c_{o,t} - c_{p,t}) + dt. \]

In the special case \(\gamma = \psi \) we can show that

\[\alpha l_{p,t}^2 + (1 - \alpha) l_{o,t}^2 = \alpha c_{p,t}^2 + (1 - \alpha) c_{o,t}^2. \]

Therefore, as in Gali (2008), we get

\[W_i = -\varpi E \left[\sum_{t=0}^{\infty} \beta^t \left((1 + \psi) l_{o,t}^2 - (1 - \gamma) c_{i,t}^2 + \theta \pi_t^2 \right) \right] \]

(24)

where \(\varpi \) is a positive constant, so that finally social welfare can be approximated by \(W = \int_0^1 W_i d\xi \).

In the special case, \(\gamma = \psi \), (24) becomes

\[\tilde{W}_i = -\varpi \theta^{-1} E \left[\sum_{t=0}^{\infty} \beta^t \left(\lambda c_{i,t}^2 + \pi_t^2 \right) \right] \]

(25)

with \(\lambda = 2\gamma/\theta \), which is identical to the case with homogeneous agents.

Proof of Proposition 1

To enlighten the main intuition behind the proof, we firstly only consider a one-period trap that hits at time 0, in the case \(\lambda = 0 \). Let us then denote by \(FG(k) = \sum_{t>0} \beta^t \pi_t^2 \) when there is \(k \) of periods of Odyssean forward guidance. \(FG(k) \) is increasing in \(k \) and does not depend on \(\alpha \). The last two properties are general all the periods after the end of the trap, irrespective of its length and the value \(\lambda \). The reason is that for \(t > T \) agents will not disagree and anticipate that at time 0. For the sake of notational convenience, let us denote by \(i = p \) the pessimist type and by \(i = o \) the optimist type.

Inflation and consumption at time 0 are given by

\[\pi_0 = (\alpha (\beta \pi_{p,0} + \kappa c_{p,0}) + (1 - \alpha) (\beta \pi_{o,0} + \kappa c_{o,0}) \right), \]
\[c_0 = \alpha c_{p,0} + (1 - \alpha) c_{o,0} \]
\[c_{o,0} = c_{o,1} - \gamma^{-1} (\rho_{t} - \pi_{o,1}) \]
\[c_{p,0} = c_{p,1} - \gamma^{-1} (\rho_{t} - \pi_{p,1}) \]

where \(\pi_{i,1} \) is a short notation for the expectation of agent \(i \) about inflation at time 1 and \(\rho_{t} = -\log R - \xi < 0 \). Bear in mind that \(c_{i,1} \) and \(\pi_{i,1} \) do not depend on \(\alpha \) as agents consistently expect homogeneous beliefs are restored after that date.
Let us investigate the conditions for which for $k > k'$ we can have $\pi_0^2(k) + FG(k) \leq \pi_0^2(k') + FG(k')$, i.e. forward guidance for k period is not less efficient of a forward guidance for k' periods. First note that

$$\frac{\partial c_0(k)}{\partial \alpha} = c_{p,0}(k) - c_{a,0}(k) = \gamma^{-1}(\pi_{p,1}(k') - \pi_{o,1}(k')) + c_{p,1}(k') - c_{o,1}(k'))$$

as $\frac{\partial c_{p,0}}{\partial \alpha} = \frac{\partial c_{o,0}}{\partial \alpha} = 0$, and so

$$\frac{\partial c_0(k)}{\partial \alpha} < \frac{\partial c_0(k')}{\partial \alpha}$$

$$\frac{\partial \pi_0(k)}{\partial \alpha} = \beta (\pi_{p,1}(k) - \pi_{o,1}(k)) + \kappa (c_{p,0}(k) - c_{o,0}(k)) < \frac{\partial \pi_0(k')}{\partial \alpha} < 0.$$

given the facts:

i) $\pi_{p,1}(k) < \pi_{p,1}(k') < \pi_{p,1}(0) = 0$, $\pi_{o,1}(k) > \pi_{o,1}(k') > \pi_{o,1}(0)$,

ii) $c_{p,1}(k) < c_{p,1}(k') < c_{p,1}(0) = 0$, $c_{o,1}(k) > c_{o,1}(k') > c_{o,1}(0)$.

The derivative of $\Pi(k, k', \alpha) = \pi_0^2(k) - \pi_0^2(k')$ with respect to α is:

$$\frac{\partial \Pi(k, k', \alpha)}{\partial \alpha} = 2 \left(\pi_0(k) \frac{\partial \pi_0}{\partial \alpha} - \pi_0(k') \frac{\partial \pi_0(k')}{\partial \alpha} \right)$$

whereas, $\Phi(k, k') = FG(k') - FG(k) < 0$. By substitution we get:

$$\pi_0 \frac{\partial \pi_0}{\partial \alpha} = \alpha \left((\beta + \kappa \gamma^{-1})(\pi_{p,1} - \pi_{o,1}) + \kappa (c_{p,1} - c_{o,1}) \right)^2 +$$

$$+ \left((\beta + \kappa \gamma^{-1}) (\pi_{o,1} + \kappa c_{o,1} - \gamma^{-1} \rho) \left((\beta + \kappa \gamma^{-1})(\pi_{p,1} - \pi_{o,1}) + \kappa (c_{p,1} - c_{o,1})\right) \right)$$

where the term

$$\left((\beta + \kappa \gamma^{-1}) (\pi_{p,1}(k) - \pi_{o,1}(k)) + \kappa (c_{p,1}(k) - c_{o,1}(k)) \right),$$

is smaller than

$$\left((\beta + \kappa \gamma^{-1}) (\pi_{p,1}(k') - \pi_{o,1}(k')) + \kappa (c_{p,1}(k') - c_{o,1}(k')) \right),$$

for the facts i) and ii) above. As a result, when $\alpha = 0$, the derivative $\frac{\partial \Pi(k, k', \alpha)}{\partial \alpha}$ is negative. In addition, $\frac{\partial \Pi(k, k', \alpha)}{\partial \alpha}$ is a linear and increasing function of α.

Therefore, let us consider a situation in which $\Pi(k, k', \alpha) > \Phi(k, k')$ - i.e. forward guidance for k' is preferred to k, with $k > k'$, in the absence of pessimists. As α increases in the range $(0, 1)$, the inequality can switch sign either never or twice, given that by construction $\Pi(k, k', 1) > 0$ (all agents are Delphic). In particular, the upper threshold $\bar{\alpha}$ is such that $\Pi(1, 0, \bar{\alpha}) = \Phi(1, 0)$.

Let us go back now to the case $\lambda > 0$. In this case the relevant inequality becomes

$$(1 - \alpha) \left(c_{o,0}^2(k) - c_{o,0}^2(k') \right) + \alpha \left(c_{p,0}^2(k) - c_{p,0}^2(k') \right) + \Pi(k, k', \alpha) \leq \hat{\Phi}(k, k')$$

where $\hat{\Phi}(k, k')$, which preserves the properties of $\Phi(k, k')$, has been extended accordingly. As before with $k > k'$, we have facts i) and ii). To show that the additional term

$$c_{o,0}^2(k) - c_{o,0}^2(k') + \alpha \left(c_{p,0}^2(k) - c_{p,0}^2(k') \right) - \alpha \left(c_{p,0}^2(k') - c_{p,0}^2(k') \right)$$

is also increasing in α, notice that $0 > c_{p,0}(k') > c_{p,0}(k)$ and $c_{o,0}(k) > c_{o,0}(k') > 0$ implies

$$c_{o,0}(k) > c_{p,0}(k') + c_{o,0}(k')$$
so that

\[(c_{p,0}(k) + c_{o,0}(k))(c_{p,0}(k) - c_{o,0}(k)) > (c_{p,0}(k') + c_{o,0}(k'))(c_{p,0}(k') - c_{o,0}(k'))\]

can be easily shown given that \(c_{p,0}(k) - c_{o,0}(k) > c_{p,0}(k') - c_{o,0}(k')\) from facts ii). Nevertheless, the additional term is positive at \(\alpha = 0\). This implies that whereas all the qualitative feature of our analysis equally hold considering \(\lambda > 0\), a longer forward guidance are ceteris paribus more efficient at low \(\alpha\).

Let us look at how the reasoning can be extended to multiple periods in the liquidity trap. Without loss of generality, let us go back to the simple case \(\lambda = 0\). We add a period \(t = -1\) that takes place just before period 0, then the reasoning can be extended recursively. We have then to compare:

\[1/\beta \pi_{-1}^2(k) - 1/\beta \pi_{-1}^2(k') + \Pi(k, k', \alpha) \leq \Phi(k, k').\]

Notice that the additional term is typically positive, so ceteris paribus, with a longer trap a longer forward is needed for low \(\alpha\). The derivative with respect to \(\alpha\) of the additional terms \(\Pi_{-1}(k, k', \alpha)\) is:

\[\frac{\partial \Pi_{-1}(k, k', \alpha)}{\partial \alpha} = \beta^{-1} \left(2\pi_{-1}(k) \frac{\partial \pi_{-1}(k)}{\partial \alpha} - 2\pi_{-1}(k') \frac{\partial \pi_{-1}(k')}{\partial \alpha}\right),\]

which has the same structure than (26) and can be expressed similarly as a linear combination of future actual aggregate consumption and inflation. In particular, we can show

\[\frac{\partial c_{-1}(k)}{\partial \alpha} = \frac{\partial c_{0}(k)}{\partial \alpha} + \frac{\partial c_{-1}(k')}{\partial \alpha} < 0\]

\[\frac{\partial \pi_{-1}(k)}{\partial \alpha} = \frac{\partial c_{-1}(k)}{\partial \alpha} + \frac{\partial \pi_{0}(k)}{\partial \alpha} < 0\]

using previous relations. Therefore, \(\partial \pi_{-1}^2(k)/\partial \alpha\) is a linear downward sloping function of \(\alpha\). Given this result, we can then extend recursively the analysis to an arbitrarily number of periods.
References

