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1 Introduction

We propose a new mechanism—based on learning from prices—that delivers expectations-

driven economic fluctuations without relying on any source of extrinsic noise. We show that

when households learn from the prices of the goods they consume, higher prices can lead house-

holds to become unduly optimistic about their economic prospects. Initial optimism causes

households to demand more goods, further increasing prices beyond their full-information

level. The self-reinforcing nature of this feedback loop leads to equilibria in which even small

shocks to supply may drive large changes in beliefs, inducing the type of aggregate comovement

typically associated with demand shocks. We develop our learning from prices mechanism

within a stylized macroeconomic model, and show that it has several promising features for

explaining business cycles.

Our model economy consists of a continuum of islands, each inhabited by competitive

households and producers. Producers employ local labor and a homogenous global factor—

capital—to produce a local consumption good using a decreasing returns technology. House-

holds buy the local consumption good, supply labor elastically, and save in money. Islands

are informationally isolated, connected only by frictionless markets for capital and money.

There are two sources of randomness in the economy: one local and one global. The local

disturbance shifts the velocity of money within an island, and has the effect of an island-

specific wealth shock. The global shock drives aggregate variation in the productivity of

producers. The equilibrium price for each local good thus reflects (i) local demand conditions,

because of decreasing returns; (ii) aggregate productivity, because productivity shocks affect

production opportunities; and (iii) the aggregate price of capital, because capital is an input

in production.

The key friction in our environment is that only a fraction of households observe the local

shock when they choose consumption; the remaining households must infer local conditions

from the prices they see on the market. These uninformed households are uncertain whether

a rising price indicates improving local conditions or falling aggregate productivity. They

therefore attribute a part of of every observed price change to local conditions. Because of

this, a price increase driven by lower aggregate productivity is interpreted on every island
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as a positive local shock, increasing the demand for each island’s local good. Higher total

demand for final goods, however, leads to higher demand for the global capital good, raising

its price, which is reflected in yet higher final good prices. When this feedback is strong

enough, higher prices spur aggregate demand, amplifying capital price volatility and making

households’ equilibrium inference worse.

The microfoundation of our signal structure as a price is crucial to our mechanism. First,

the fact that information comes from market prices, rather than from exogenously specified

signals, allows aggregate demand to be upward sloping in the aggregate price level, thereby

engendering positive price-quantity comovement. Second, the feedback of the aggregate capi-

tal price into final good prices allows an initial impulse, such as a small surprise1 in aggregate

productivity, to be reinforced and to ultimately produce large fluctuations in beliefs.

When the feedback of actions into beliefs is strong enough, the economy exhibits sizable

aggregate fluctuations, even in the limit of arbitrarily small aggregate productivity shocks.

Fluctuations occur in the limit because, as aggregate shocks decrease in variance, local price

signals better reflect local conditions, increasing the weight that households place on their price

observations. Approaching the limit of no aggregate shocks, inference weights can increase

fast enough to fully offset the falling variance of aggregate shocks, leading to a positive finite

variance of beliefs in the limit.

To an econometrician, the fluctuations emerging at the limit of no aggregate shocks would

appear to be driven by something akin to “sentiment.” Indeed, at that limit, our equilibria

have the same stochastic properties as the sentiment equilibria characterized in Benhabib et al.

(2015). Yet, they are not sentiment equilibria in the sense intended by those authors. Instead,

in our model, belief fluctuations emerge as a case of extreme sensitivity to fundamental shocks:

whether agents are optimistic or pessimistic is entirely pinned down by fundamentals and, we

show, cannot be influenced by extrinsic noise. From a theoretical point of view, this result

demonstrates that the equilibria in Benhabib et al. (2015) are fragile to the introduction of

an exogenous aggregate component in market signals.

While the limiting cases are of theoretical importance, we also demonstrate that the learn-

ing from prices mechanism can be of practical importance for understanding business cycles.

1We use the word “surprise” to mean “an unanticipated shock”.
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To do this, we first show that the model delivers fluctuations with Keynesian features under

far broader conditions than those needed for the limit results. In particular, it yields positive

price-quantity comovement whenever there are enough uninformed agents and aggregate pro-

ductivity shocks are sufficiently small, restrictions encompassing cases with both equilibrium

multiplicity and uniqueness. Constraining ourselves to work within the parameter region

where a unique equilibrium exists, we then explore the potential of our model to explain

business cycle facts.

For matching qualitative features of the data, one challenge is that any model driven by

a single productivity shock must imply perfect correlation between prices, quantities, and

productivity, while the data support only weak correlation. To better align model predictions

with observed business cycles, we allow a portion of productivity to be anticipated by agents

in the form of public news. More public information might be expected to mitigate the

expectational errors of agents, dampening demand-side effects. On the contrary, a smaller

contribution of surprise productivity to the price signal leads agents to place more weight

on prices when forming their inference. Smaller surprise shocks to productivity thus drive

stronger price-quantity comovement, while anticipated productivity shocks lead to standard

supply-driven comovements.

With distinct transmission mechanisms for the two components of productivity, our model

generates a rich mix of supply- and demand-driven fluctuations, even though productivity is

the only source of aggregate randomness. This version of the model can match the qualitative

pattern of conditional and unconditional moments seen in the data, including modest price-

quantity comovements, contractionary labor responses to positive technology shocks, and a

low correlation of total productivity with output and inflation. Without learning from prices,

productivity shocks would move aggregate prices and quantities in opposite directions, so

that matching these facts would require some combination of price-setting frictions, aggregate

demand shocks, or exogenous coordination of beliefs on an extrinsic shock. Thus, although

too stylized for a full-fledged quantitative analysis, our model qualitatively matches several

basic facts that are a challenge for more sophisticated DSGE models.

We conclude with several extensions that demonstrate the robustness of the basic insight.

First, we show that our analysis easily generalizes to the introduction of noisy private signals
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about local conditions. Second, we present an alternative economy with different foundations

for the labor market, and show that it delivers the same qualitative results as the baseline

economy. Third, we show that while higher prices do indeed spur total demand, the model

need not imply the existence of a positive price-quantity relationship at the good level. Finally,

we show the equilibria we emphasize are stable in the sense of being locally-learnable.

Connection with literature. This paper is the first to demonstrate that learning from

prices might play a central role in explaining business cycle comovements. Nevertheless, en-

dogenous signal structures have previously appeared in macroeconomic contexts, starting with

Lucas (1972). More recent examples include Amador and Weill (2010) and Venkateswaran

(2013). Gaballo (2017) is also predicated on a learning through prices mechanism, but his

results are both formally and qualitatively different. Formally, his paper shows how small dis-

persion of fundamentals may generate under-reaction of beliefs to aggregate shocks, whereas

here we focus on the amplification of small aggregate shocks. In his application, Gaballo

(2017) uses the endogenous information rigidity to explain aggregate price rigidity; here, we

use endogenous informational amplification to explain business cycle fluctuations.

Agents make correlated errors in our economy, a theme of the recent noise-shock and sen-

timent literatures (Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib et al., 2015). Our

approach here is distinct because (i) signals have market microfoundations (ii) all shocks are

fundamental, and (iii) there is no role for extrinsic noise. Moreover, the inference problem

solved by agents in our economy is entirely static, with different transmission for observed and

unobserved current productivity shocks. In contrast, many papers in literature on news and

noise (Barsky et al., 2015; Chahrour and Jurado, 2017a) focus on the impact of anticipated

future productivity shocks. Our paper also answers a criticism of that literature, empha-

sized by Angeletos et al. (2014) and Angeletos et al. (2016), that productivity is only weakly

correlated with business cycle variables at all horizons. Our model is consistent with this ob-

servation because the unanticipated and surprise components of productivity are transmitted

very differently, leading to weak correlation between total productivity and other variables.

Our focus on the informative role of prices echoes a long tradition in finance, starting

with Grossman and Stiglitz (1976, 1980). The potential of this mechanism to deliver price

amplification and/or multiple equilibria has been documented by many authors, including
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Burguet and Vives (2000) and Barlevy and Veronesi (2000) and more recently by Albagli

et al. (2014), Manzano and Vives (2011), and Vives (2014).2 Unlike these papers, which

usually include noise traders or exogenous shocks to information, every shock in our model is

fundamental. And, we are the first to show the potential for extreme amplification in limit

cases.

Amplification is also a common theme in macroeconomic theory: there is often too lit-

tle variation in observed fundamentals for standard models to justify the size of observed

business cycles. Historically, amplification has often been introduced via strong complemen-

tarities, notably through production externalities that, in extreme cases, can support sunspot

fluctuations (see Azariadis, 1981; Cass and Shell, 1983; Cooper and John, 1988; Manuelli

and Peck, 1992; and Benhabib and Farmer, 1994, among others). Recent literature has pro-

posed several financial frictions to help account for the large macroeconomic effects of modest

shocks (Kiyotaki and Moore, 1997; Bernanke et al., 1999; Brunnermeier and Sannikov, 2014).

Many of these mechanisms share with our paper the potential to generate an upward sloping

demand curve in some market. Nonetheless, it is often difficult to find empirical support

for calibrations of these models that deliver the strongest amplification (Basu and Fernald,

1997; Dmitriev and Hoddenbagh, 2017). In our model, upward sloping aggregate demand and

strong amplification arise for very different reasons and under a broad range of parameters.

Finally, recent work by Bergemann and Morris (2013) characterizes the full set of incomplete-

information equilibria in a large class of coordination games. Related work by Bergemann

et al. (2015) studies the exogenous information structures that give rise to maximal aggregate

volatility, and the extrema they find are typically achieved when the price signal delivers

sentiment-like fluctuations in our economy. A final implication of our analysis is that the ad-

dition of a small amount of aggregate noise in the signal—in this case, captured by the effect

of productivity on the price signal—can sustain additional equilibria that do not arise under

full information. A previous literature has demonstrated cases in which adding idiosyncratic

noise to signals can either eliminate (Morris and Shin, 1998) or generate (Gaballo, 2017)

additional equilibria.

2The literature on price revelation in auction markets following Milgrom (1981) also features a dual infor-
mational/allocative role for prices. For recent examples, see Rostek and Weretka (2012); Lauermann et al.
(2012); Atakan and Ekmekci (2014).
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2 A microfounded model

In this section, we present an RBC model with the aim of providing a simple and transparent

intuition for our main mechanism. Our economy gives full microfoundations for the informa-

tion structure that generates imperfect learning. In particular, all shocks are fundamental in

nature and all signals are derived as endogenous outcomes of competitive markets.

2.1 Preferences and technology

The economy consists of a continuum of islands, indexed by i ∈ [0, 1], each inhabited by a

continuum of price-taking households and producers. Producers on island i produce a local

consumption variety by employing local labor and a globally-traded productive input, capital.

Households, in turn, make saving/consumption choices and supply labor in local markets.

A household j ∈ [0, 1] living on island i enjoys utility,

∞∑
t=0

βt
(

logCij,t − V (Nij,t) + χe−µi−σ
2
µ/2Mij,t

)
, (1)

and faces the budget constraint,

Mij,t + Pi,tCij,t = QtZ +Wi,tNij,t + Πi,t +Mij,t−1. (2)

In the above problem, Cij,t denotes household (i, j)’s consumption of the local consumption

good i, which is purchased at price Pi,t. Household (i, j)’s supply of labor is given by Nij,t and

is remunerated at local wage rate Wi,t. For future reference, we define island level consump-

tion, Ci,t ≡
∫
Cij,tdj, and labor, Ni,t ≡

∫
Nij,tdj. The function V (·) governs the disutility of

labor. Πi,t captures any profits earned by firms located on island i.

The household is endowed each period with a fixed quantity of a capital good, Z.3 The

good trades freely across islands at a common price Qt and depreciates fully at the end of

the period. Finally, households choose each period their money holding, Mij,t, which yields

stochastic utility gains in the form of services from money.4 These gains are i.i.d. across islands

3While we call the fixed input good capital, our mechanism will work as long as there is a common input
whose aggregate supply is imperfectly elastic within the period. Nothing qualitative would change if capital
depreciated, and agents could invest to produce new capital.

4The money in the utility function term can also be interpreted as effort spent shopping. For example, see
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and (for simplicity) are assumed to be permanent across time and are distributed according

to µi ∼ N(0, σ2
µ). The presence of money in the utility function greatly simplifies our analysis

(even considering an arbitrarily small χ, see later discussion) as variation in utility gains

exogenously pin down fluctuations in in future wealth prospects. The money trades freely

across islands and its aggregate supply is fixed, so that
∫
Mij,td(i, j) = M in every period.

Each island is also inhabited by a representative firm that maximizes profits,

Πi,t = Pi,tCi,t −Wi.tNi,t −QtZi,t, (3)

by choosing Ni,t and Zi,t, taking prices as given.5 The capital good is combined with island-

specific labor to produce the final good, Ci,t, according to the technology,

Ci,t =

(
Nφ
i,t

(
eζ̃Zi,t

)1−φ)α
, (4)

where φ ∈ (0, 1) is the labor share of revenue excluding profits in the economy, α ∈ (0, 1)

measures the return to scale in production, and aggregate productivity ζ̃ is drawn by nature

from a distribution ζ̃ ∼ N(0, σ2
ζ̃
).

Period t = 0 is divided into three stages.

1. In the first stage, before any shock realizes, households fix their wage for the coming

period.

2. In the second stage, shocks realize and a fraction κ ∈ (0, 1) of households on each island

receives perfect information about their local shock, µi.

3. In the third stage, households make consumption choices based on their private infor-

mation about µi and the observed market price of their local consumption goods; firms

produce contingent on realized productivity and the prices of their input and output

goods; and all markets clear.

Let us comment on two important assumptions that we make. First, our assumption that

a fraction of households knows local fundamentals is reminiscent of Grossman and Stiglitz

Amador and Weill (2010) (in particular, footnote 7, page 871).
5Note that capital demanded by firms on island i, Zi,t, need not be equal to Z, the quantity of capital

supplied by households from the same island.
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(1980). This assumption, together with decreasing returns to scale (see later discussion), en-

sures that consumption prices contain local information. The fraction κ of informed consumer

is crucial because, as emphasized by Hellwig (1980), prices cannot reveal information unless

that information is already available, perhaps noisily, to some agents in the economy.

Second, our assumption of wage rigidity ensures that a higher desire to consume today

translates into higher actual consumption. This could not be true if, instead, wages perfectly

comoved with consumers’ marginal utility, in which case increased desire to consume would

be perfectly offset by a rising price for the consumption good. Wage rigidity is not necessary

for this result, however: what is crucial is that the first order conditions for consumption and

labor supply hold with different information sets.

In Section 5.2, we relax this informational wage rigidity and show that our mechanism

works in the same way. In that setting, families are divided into workers and consumers,

à la Lucas (1980), which enables us to isolate the role information plays in each market.

In the appendix, we assume that (only) labor market choices are made under perfect infor-

mation, implying local prices are informative about local conditions even when κ = 0. The

microfoundation in Chahrour and Gaballo (2017) achieves similar results under flexible prices.

Subsequent periods unfold exactly as period t = 0, but since all uncertainty is resolved

by the end of the initial period, equilibrium prices and quantities are constant from period

t = 1 onwards. In particular, to make the household inference problem non-trivial, we assume

that it does not observe in real-time the realized value of their resources – labor earnings

plus profits plus the price of capital – when making consumption choices.6 This assumption

prevents households from using information about the price of capital, which would reveal

aggregate productivity. The price of capital is instead revealed at the end of the period, so that

households enter subsequent periods without any uncertainty about aggregate productivity.

The formal definition of equilibrium is given by the following.

Definition 1. For a given realization of {µi}10 and ζ̃, a rational expectations equilibrium is

a collection of prices {Pi,t,Wi,t, Qt} and quantities {Wij,t, Nij,t, Cij,t, Zij,t} for each i, j and

t such that household and firms choices are optimal given the prices they observe, and all

markets clear.

6As we will see, optimality only requires knowing the steady state value of the resources and the realization
of the local shock.
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In later sections, we generalize our baseline structure. In Section 4, we study the case

where households also receive public information about productivity. This extension proves

important in reproducing several salient facts about the business cycle. In Section 5, we

demonstrate the robustness of the mechanism by exploring several extensions of the baseline

model.7

2.2 Equilibrium with learning from prices

Given an initial fixed period-0 wage, the first order conditions of the household and firm are:

E
[
C−1ij,t|Iij,0

]
= E [Λij,tPi,t|Iij,0] , (5)

E[Λij,t|Iij,0], = E[βΛij,t+1 + χe−µi−σ
2
µ/2|Iij,0], (6)

Qt = α(1− φ)Pi,tN
φ
i,tZ

α(1−φ)−1
i,t eζ̃α(1−φ), (7)

Wi,t = φαPi,tN
αφ−1
i,t (eζ̃Zi,t)

α(1−φ). (8)

where Iij,0 is the information set of household (i, j), Λij,t is the Lagrange multiplier on the

budget constraint in equation (2), and Wi,0 is fixed at its steady state V ′(N̄i,t) where N̄i,t is

steady state working hours. In particular, Iij,0 = {Pi,0} if household (i, j) if of the uninformed

type and Iij,0 = {µi, Pi,0} otherwise. It is useful to remark right away that, since each

household faces only two types of shocks, access to the second, larger, information set will

aways allow agents to take the full-information optimal action.

By iterating forward (6) we find

Λij,0 = E[e−µi|Iij]e−σ
2
µ/2

β

1− β
χ, (9)

7Earlier drafts of this paper showed that our mechanism could also arise on the supply side of the economy,
more like Lucas (1972). In that version, we assume firms are uncertain about the value of an intermediate
input, which is produced with local and global factors. This lead demand-driven fluctuations to occur in
the market for intermediate inputs rather than in the final market. Our choice to place the main friction on
the side households is consistent, however, with the recent evidence of Chahrour and Ulbricht (2017) that
information frictions on the part of households, rather than firms, are needed to match aggregate data.
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which can be written as an exact log-linear relationship,8

λij,0 = −E[µi|Iij]. (10)

Thus, the local shock µi creates cross-sectional heterogeneity in the opportunity cost of con-

sumption. Notice that if the µi were not permanent, then equation (10) would still follow

as the log-linear approximation of the corresponding version of (9), without affecting any of

our results. In the passage from (5) to (9), it is now clear that the main role of money in

the utility function is to exogenously pin down future Lagrangian multipliers, which helps

to simplify our analysis. The parameter χ can be made arbitrarily small without changing

anything that follows.

We focus our analysis on the inference of agents in the initial period, suppressing time

subscripts in what follows. The remaining equilibrium conditions of the economy can be also

written exactly in terms of log-deviations from the stochastic steady state. These conditions

are given by:

ci = µei − pi (11)

wi = pi − (1− αφ)ni + α(1− φ)(zi + ζ̃) (12)

q = pi + αφni + (α(1− φ)− 1)zi + α(1− φ)ζ̃ (13)

ci = αφni + α(1− φ)(zi + ζ̃) (14)

where µei ≡
∫
E[µi|Iij]dj = κµi + (1 − κ)E[µi|pi] is the average within-island expectation

of the local shock and wi = 0 because of our timing assumption. For given realizations of

the shocks and the distribution of household expectations, the system of equations above

pins down equilibrium allocations and prices. A rational expectations equilibrium is therefore

characterized by allocations and prices that jointly satisfy (11) through (14) and optimality

in households’ expectation formation.

In the appendix, we solve the linear system (11)-(14). The equilibrium price of local

consumption is a function of local demand conditions and the cost of the capital, adjusted for

8We denote x ≡ log(X/X̄) for any level variable X whose stochastic steady state (which includes deter-
ministic Jansen terms) is denoted by X̄. For future reference, define also x ≡

∫
xidi as the aggregate analogue

of any idiosyncratic variable xi.
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productivity:

pi = (1− α)µei + α(1− φ)(q − ζ̃). (15)

Notice that local conditions are reflected in the local price only to the extent that the pro-

duction function has exhibits decreasing returns.

Crucially, the price signal captured in equation (15) depends on the price of capital, q,

which in turn depends on average demand conditions in the economy. Specifically, we show

in the appendix that

q = µ̄ (16)

where µ̄ ≡
∫
µeidi = (1− κ)

∫
E[µi|pi]di is the average belief across all agents regarding their

own µi. After rescaling and removing terms known to all agents on island i, the price signal

in (15) is informationally equivalent to

si = γµi + (1− γ)

(∫
E[µi|si]di− ζ

)
. (17)

where

γ ≡ (1− α)κ

(1− α)κ+ α(1− φ)(1− κ)
, (18)

and ζ ≡ ζ̃/(1− κ) is distributed according to N(0, σ2
ζ) with σ2

ζ ≡ σ2
ζ̃
/(1− κ)2.

The signal structure implied by equation (17) captures the endogenous feedback effect of

inference from prices back into prices, and it is on this structure that we focus our subsequent

analysis. Before proceeding to an analytical characterization, it is helpful to spell out the

economic intuition behind the inference problem being solved by households. From equation

(17), it is clear that an increase in price can be triggered by local factors—that is, by an

increase in µi—in which case the household desires to increase their consumption of the local

variety. Yet, the same increase in price could be driven by aggregate factors, either an increase

in the price of capital or a decrease in aggregate productivity, that are not related to local

conditions, in which case the household wishes to reduce consumption.

In this context, a household’s optimal response to a price change depends on the reason

that the price has changed. Yet, uninformed households cannot directly observe why prices

are changing, and they attribute a part of of every observed price change to local conditions.

Because of this, a price increase driven by a fall in aggregate productivity is interpreted
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on every island as a positive local shock. This common mistake triggers an increase ceteris

paribus in demand for each island’s local good. Higher total demand for final goods, however,

leads to higher demand for the inelastically supplied capital good, raising its price, which is

reflected in yet higher final good prices. If this feedback is strong enough, higher prices can

spur aggregate demand, thereby amplifying capital price volatility and making households’

equilibrium inference worse.

3 Amplification through learning

In this section, we analyze the signal extraction problem created by the information structure

microfounded above, and summarized by equation (17). We show how to solve the house-

holds’ inference problem, highlighting the strategic interaction engendered by the endogeneity

of the price signal. In particular, we demonstrate that informational feedback can generate

amplification of fundamental shocks, which in some cases is strong enough to deliver non-

trivial responses to vanishingly small shocks. We also show that in our model Sentiment

equilibria à la Benhabib et al. (2015) do not exist, i.e. fluctuations in average expectation are

uniquely determined by aggregate productivity. The focus in this section is on the inference

of uninformed households. To keep things self-contained, references to average expectations

in this section concern the average expectation among the uninformed.

Best individual weight function

The key feature of the signal extraction problem is that the precision of the signal depends on

the nature of average actions across the population and, therefore, on the average reaction of

other households to their own price signals. A rational expectations equilibrium is a situation

in which the individual reaction to the signal is consistent with its actual precision, i.e., is an

optimal response to the average reaction of others.

Since we assume that all stochastic elements are normal, the optimal forecasting strategy

is linear. As a consequence, the individual expectation is linear in si and can be written as

E[µi|si] = ai

(
γµi + (1− γ)

(∫
E[µi|si]di− ζ

))
, (19)
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where ai is the coefficient, determined prior to the realization of shocks, that measures the

strength of the reaction of household i’s beliefs to the signal she will receive. Since the signal

is ex ante identical for all households, each uses a similar strategy, and we can recover the

average expectation by integrating across the population:∫
E[µi|si]di = a (1− γ)

(∫
E[µi|si]di− ζ

)
, (20)

with a ≡
∫
aidi denoting the average weight applied to the signal. Solving the expression

above for the average expectation yields∫
E[µi|si]di = − a (1− γ)

1− a (1− γ)
ζ, (21)

which is a nonlinear function of the average weight, a. Importantly, this function features a

singularity at the point 1/(1−γ). When a < 1/(1−γ), the average expectation comoves with

the productivity shock and the opposite holds when a > 1/(1− γ).

The variance of the average expectation is given by

σ2
E(a) =

(
a (1− γ)

1− a (1− γ)

)2

σ2, (22)

where σ2
E ≡ var(

∫
E[µi|si]di)/σ2

µ and σ2 ≡ σ2
ζ/σ

2
µ are the variances of the average expecta-

tion and the aggregate shock, respectively, once each is normalized by the variance of the

idiosyncratic fundamental.

Substituting the average expectation in (21) into the price signal described in equation

(17), we get an expression for the local signal exclusively in terms of exogenous shocks:

si = γµi +
γ − 1

1− a (1− γ)
ζ, (23)

whose precision with regard to µi is given by

τ(a) =

(
γ (1− a (1− γ))

(1− γ)σ

)2

. (24)

We are now ready to compute the household’s optimal inference, taking the average weight

of other households as given. We seek an ai such that E[si(µi− aisi)] = 0, i.e., the covariance

between the signal and forecast error is zero in expectation. This condition implies that
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information is used optimally. The best individual weight is given by

ai(a) =
1

γ

(
τ(a)

1 + τ(a)

)
. (25)

Given the linear-quadratic environment, we can interpret ai(a) in a game-theoretic fashion

as an individual’s best reply to the profile of others’ actions summarized by the sufficient

statistic a. To be precise, every ai is associated with one and only one contingent strategy

that describes the conditional expectation E[µi|si] = aisi of household i, where si identifies a

set of states of the world indistinguishable to household i.

Equilibria

Given that agents face an information structure with the same stochastic properties, a rational

expectations equilibrium must be symmetric. This last requirement completes our notion of

equilibrium, which is formally stated below.

Definition 2. A rational expectations equilibrium is characterized by a profile of households’

expectations {E[µi|si]} such that E[µi|si] = âsi with ai (â) = â, for each i ∈ (0, 1).

Our game-theoretic interpretation of the optimal coefficient makes clear the equivalence

between a rational expectations equilibrium and a Nash equilibrium: No one has any individ-

ual incentive to deviate when everybody else conforms to the equilibrium prescriptions.

An equilibrium of the model is a fixed point of the individual best-weight mapping given

by equation (25). In practice, there are as many equilibria as intersections between ai(a) and

the bisector. The fixed-point relation delivers a cubic equation, which may have one or three

real roots. The following proposition characterizes these equilibrium points.

Proposition 1. For γ ≥ 1/2, there always exists a unique REE equilibrium for â = au ∈
(0, γ−1).

For γ < 1/2, there always exists a low REE equilibrium for â = a− ∈ (0, (1− γ)−1). In

addition, there exists a threshold σ̄2 such that, for any σ2 ∈ (0, σ̄2), a middle and a high

REE equilibrium also exist for â = a◦ and â = a+, respectively, both lying in the range

((1− γ)−1 , γ−1).

Proof. Given in Appendix A2.

Proposition 1 states that when the aggregate component receives relatively high weight

in the signal, the model may exhibit multiplicity. In particular, there are three equilibria
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(a) γ = 0.75

0

0

(b) γ = 0.25

Figure 1: The figure illustrates four properties of ai(a) for given γ and σ: (i) ai(0) > 0; (ii)
a′i(a) < 0 for a ∈ (0, (1−γ)−1), and ai((1−γ)−1) = 0; (iii) a′i(a) > 0 for for a ∈ ((1−γ)−1, γ−1)
and lima→∞ = γ−1; (iv) ∂ai(a)/∂σ ≥ 0.

whenever γ < 1/2 and the variance of the productivity shock is small enough; otherwise, a

unique equilibrium exists. While an analytical characterization of these equilibria is possible,

the expressions are rather complicated. Nevertheless, the relevant properties can be grasped

from the reaction functions plotted in Figure 1 (see figure caption).

The slope of the ai(a) curve at the intersection with the bisector determines the nature

of the strategic incentives underlying each equilibrium. Equilibria au and a− are charac-

terized by substitutability in information, as the optimal individual weight is decreasing in

the average weight, i.e., a′i(â) < 0.9 In contrast, the equilibria a◦ and a+ are characterized

by complementarity in information since a′i(â) > 0. In fact, as soon as a > (1 − γ)−1, the

higher the a the higher the precision of the signal regarding µi, which further pushes up the

optimal weight. The emergence of complementarity explains the upward-sloping part of the

best-weight function and is key for the existence of multiple equilibria.

While complementarity is essential for generating multiple equilibria, it is neither necessary

nor sufficient to imply a strong informational multiplier. To see this, define Γ(â) ≡ σ2
E(â)/σ2

as the volatility of beliefs relative to the volatility of the shock ζ for some equilibrium point

9See equation (43) in appendix A2.
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â. We will say that the economy exhibits amplifying informational feedback whenever a

fall in the volatility of the exogenous shock leads to an increase in Γ(â), i.e., ∂Γ(â)/∂σ <

0, and dampening feedback otherwise. The following proposition classifies the equilibria in

Proposition 1 according to the type of feedback they generate.

Proposition 2. The equilibria au, a−, and a◦ all exhibit amplifying feedback, while the equi-

librium a+ exhibits dampening feedback.

Proof. Given in Appendix A2.

The characterization of informational feedbacks as either amplifying or dampening depends

on whether the equilibrium value of a gets closer to (1 − γ)−1 as σ shrinks. From Figure 1,

it is clear that au, a◦, and a− feature amplifying feedback, whereas a+ features dampening

feedback. Nevertheless, the feedback effects in a◦ and a− are distinct from that in au for

reasons we discuss in the following section.

3.1 Limit equilibria: Amplification without Sentiments

Here we show that learning from prices can generate amplification strong enough that the

economy sustains sizable aggregate fluctuations in the limit σ2 → 0. Fluctuations in the limit

case result from households’ correlated errors regarding local conditions, echoing a central

theme in the recent literature on sentiments. Yet, the correlated errors generated in our

economy are distinct from the sentiments highlighted by Benhabib et al. (2015) and Acharya

et al. (2017), for the shock driving them is determinant in every equilibrium. Indeed, we show

in the final proposition of this section that extrinsic sentiments à la Benhabib et al. (2015)

are fragile to the introduction of any fluctuations in aggregate fundamentals.

The first proposition of this section characterizes equilibria in the limit case that aggregate

fundamentals are arbitrarily small.

Proposition 3. In the limit σ2 → 0,

i. the unique equilibrium (for γ ≥ 1/2) and the high equilibrium (for γ < 1/2) converge to

a point with no aggregate volatility:

lim
σ2→0

au,+ = min

(
1

γ
,

1

1− γ

)
lim
σ2→0

σ2
E(au,+) = 0. (26)
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ii. the low and middle equilibria (for γ < 1/2) converge to the same point and exhibit non-

trivial aggregate volatility:

lim
σ2→0

a◦,− = (1− γ)−1 lim
σ2→0

σ2
E(a◦,−) =

γ(1− 2γ)

(1− γ)2
. (27)

Proof. Given in Appendix A2.

Part (i) of Proposition 3 points to cases in which amplification is not strong enough to

result in non-trivial fluctuations infinitesimal fundamental shocks. Interestingly, this occurs

for the unique equilibrium case, even though we have just shown that it exhibits amplifying

feedback; in this case, responses to aggregate shocks grow with shrinking σ, but not fast

enough to offset the falling size of those shocks. Figure 2, which plots the variance of aggregate

beliefs as a function σ, captures these patterns. In particular, both the “unique” and “high”

lines converge to zero as σ−1 goes to infinity, although the former is non-monotonic well away

from the limit.

In contrast, Part (ii) of Proposition 3 points to cases — the middle and low equilibria —

where responses to fundamental shocks grow fast enough to completely offset the shrinking

size of shocks; in the limit the product of the two converges to deliver a positive, finite

variance of beliefs. Figure 2 also captures these patterns, showing the variance of beliefs in

both equilibria converging to the same strictly positive value.

Surprisingly, the limiting cases of these two equilibria have the same stochastic properties

as the extrinsic sentiment equilibria described by Benhabib et al. (2015). In our economy,

however, equilibria à la Benhabib et al. (2015) do not exist. In our case fluctuations are driven

by infinitesimally-small fundamental shocks, whose realization is able to coordinate sizable

fluctuations in agents’ expectations via their effects on the endogenous price signal; in other

words, whether agents are optimistic or pessimistic is entirely pinned down by the realization

of fundamentals, even at the limit.

A natural question, given the results in Proposition 3, is whether errors driven by extrinsic

shocks can coexist with the fundamental-driven fluctuations in aggregate beliefs captured by

our model. The next proposition demonstrates that, in fact, extrinsic sentiments are always

crowded-out by common shocks to productivity.

17



(a) γ = 0.75 (b) γ = 0.25

Figure 2: Belief volatility approaching the limit.

Proposition 4. Suppose that ∫
E[µi|si]di = φζζ + φεε,

where φε is the equilibrium effect of an extrinsic sentiment shock, ε ∼ N(0, σ2
ε̃), not related to

fundamentals. Then, φε = 0 for any σ2 > 0.

Proof. Given in Appendix A2.

The fundamental shock always dominates the extrinsic shock because its fundamental

nature gives it two channels — one endogenous and one exogenous — through which it

influences people’s information and, therefore, their actions. Intuitively, conjecture that the

average action reflects a response to both fundamental and extrinsic shocks. In equilibrium,

agents respond to the average expectation, and therefore proportionally to the conjectured

endogenous coefficients for each shock. But agents also respond to the exogenous component

of the fundamental that appears in the price signal. Thus, any equilibrium must depend

somewhat more-than-conjectured on the fundamental relative to the extrinsic shock. This

guess and update procedure cannot converge unless the weight on the extrinsic shock is

exactly zero.

This logic highlights the fragility of the extrinsic version of sentiments, which are coor-

dinated by endogenous signal structures. For, any shock which tends to coordinate actions
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for exogenous reasons will also benefit from the self-reinforcing nature of learning, thereby

absorbing the role of belief shock for itself. Indeed, in the appendix we show that the same

outcome arises if local shocks µi have any common component.

4 Business cycle fluctuations

In this section, we explore the implications of the learning-from-prices mechanism for the

business cycle comovement of our economy. We show that many qualitative features of the

business cycle can be explained by our model in which productivity is the only aggregate

shock, and agents learn from prices. Moreover, we show that matching business cycles patterns

does not require parameterizing the economy to have multiple equilibrium. Rather the most

realistic comovements emerge from a version of the model with a unique equilibrium and small

but non-trivial surprises in productivity.

Before proceeding, we briefly review several stylized facts about the business cycle that

drive our exploration. These facts are summarized by Table 1: (1) output, inflation, and hours

comove; (2) total factor productivity and hours are negatively correlated; (3) inflation is only

weakly correlated with output;10 and (4) aggregate productivity is only weakly correlated

with any endogenous aggregate variable.

Without learning from prices, productivity shocks would move aggregate prices and quan-

tities in opposite directions, so that matching these facts would require some combination

of price-setting frictions, aggregate demand shocks, or exogenous coordination of beliefs on

an extrinsic shock. Our setting can be extended, however, to allow productivity shocks to

generate the appearance of both supply- and demand-driven fluctuations, thereby bringing

the model closely in line with the set of business cycle facts summarized above.

Our aim here is not to give a full quantitative account of the business cycle, but rather

to demonstrate that our theoretical mechanism challenges assumptions about how produc-

tivity shocks can be related to the business cycle. In addition to offering new foundation for

economic fluctuations, our findings suggest it may be worthwhile to revisit the conclusions

10Because our model is static, it cannot distinguish between the level of prices and inflation. If we substituted
the detrended GDP deflator for inflation in this table, then output and inflation would have a slight negative
— rather than slightly positive — correlation. We show below that our model can match a weak positive or
a weak negative correlation between output and prices.
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Table 1: Business Cycle Comovements

GDP hours inflation TFP

ρ(GDP, x) 1.00 0.86 0.18 -0.06
ρ(TFP, x) -0.06 -0.36 -0.24 1.00

Note: Data are real per-capita gross domestic product, real per-capita hours in the non-farm business sector, GDP deflator growth, and capacity
utilization adjusted TFP described by Basu, Fernald, and Kimball (2006) and maintained by John Fernald at www.frbsf.org. All data are in log-levels,
HP-detrended using the longest available sample and smoothing parameter λ = 1600. Date range: 1960Q1 to 2012Q4.

of the quantitative macroeconomic literature which has, with very few exceptions, assumed

away the possibility of learning from prices.

Equilibrium with public news

We begin by extending our framework to include public information in the form of news

on productivity. We assume that the productivity shock is composed of two independently

distributed components

ζ = ζn + ζs;

with ζn ∼ (N, σ2
ζn), ζs ∼ (N, σ2

ζs) and σ2
ζn+σ2

ζs = σ2
ζ . The first term, ζn, is a “news”component;

it corresponds to the forecastable component of productivity, and is commonly known to all

agents before their consumption choices are made. Conversely, ζs is the “surprise” component;

it is unknown to uninformed households and they seek to forecast it using their observation of

prices.11 For future reference, let σ2
n ≡ σ2

ζn/σ
2
µ, and σ2

s ≡ σ2
ζs/σ

2
µ be the normalized variances

of the forecasted and surprise components of productivity respectively.

The decomposition of productivity into a forecastable and surprise component plays two

roles in this section. First, it allows us to isolate the effects of learning through prices, as

the forecasted component of productivity will transmit in the economy as a usual supply-

side shock. Second, by combining the responses of the economy to forecasted and surprise

productivity shocks, we can generate the rich cross-correlation structure seen in the data.

Only modest modifications are necessary to characterize equilibrium in this general case.

Households use the forecasted component to refine the information contained in the price

signal by “partialing-out” the known portion of productivity. In particular, we can rewrite

11Chahrour and Jurado (2017a) show that this information structure is equivalent to assuming that agents
observe a noisy aggregate signal, s = ζ + ϑ.
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households’ expectations as

E[µi|si] = ai(si + (1− γ)ζn), (28)

where si + (1− γ)ζn represents a new signal embodying the information available to the indi-

vidual household, after she has controlled for the effect of ζn. It follows that the equilibrium

values {au, a−, a◦, a+} and the conditions for their existence are isomorphic to the ones in the

baseline economy once σ2
s takes the place of σ2.

An immediate implication is that increasing the fraction of productivity that is forecastable

actually pushes the economy towards a situation of high information multipliers and, when

γ < 1/2, towards the region of equilibrium multiplicity. For the low equilibrium, this implies

an increase in the variance of the average expectation of households. This result demonstrates

that the mechanism of Section 3 is robust to increasing the information sets of households;

so long as any aggregate component remains unknown, agents endogenously coordinate their

errors though the pricing system.

Fact 1: Supply shocks generate demand-driven fluctuations

Our key observation, from the standpoint of generating realistic business cycles, is that all the

equilibria of our model can generate business cycle fluctuations with demand-side features;

that is, final good prices, total output, the price of capital, and total employment all positively

comove in response to the surprise component of productivity. This happens because, as

aggregate volatility falls, the informational value of the price signal rises, leading agents’

beliefs about their local conditions to respond more strongly to it. Stronger aggregate effects

on beliefs eventually lead the informational channel of prices to dominate, so that consumption

increases in response to higher prices. In this way, learning from prices provides a new

mechanism for generating expectations-driven demand shocks in an economy hit only by

fundamental shocks to productivity.

This consequence of endogenous information for business cycle comovements can be seen

intuitively by analyzing the aggregate demand and aggregate supply schedules in our economy.

Using the aggrgeate version of equations (11) - (14), we can express aggregate demand and
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supply as

AD : c = µ̄− p, (29)

AS : c =
1

1− αφ
(αφp+ α(1− φ)(1− κ)ζ). (30)

When aggregate conditions have no endogenous effect on households’ beliefs, this relationship

implies a standard downward-sloping aggregate demand relation. However, this changes once

we account for the equilibrium feedback of prices into households’ inference.

To derive equilibrium aggregate demand and supply relations, in the appendix we compute

the dependence of the average belief µ̄ on prices average prices and the known news shock ζn:

µ̄ = (1− κ)

∫
E[µi|pi]di = ϕ(a)(p+ α(1− φ)(1− κ)ζn),

with ϕ(a) ≡ a(1−κ)
(1−α)κ+α(1−φ)(1−κ)+a(1−α)(1−κ) . Substituting this expression into the expression for

aggregate demand expression (29) yields

c = (ϕ(a)− 1)p+ ϕ(a)α(1− φ)(1− κ)ζn (31)

Notice that both aggregate demand and aggregate supply are shifted by the forecasted pro-

ductivity shock, ζn, while the surprise component, ζs, shifts only aggregate supply. This is

natural since, in our environment, the surprise productivity shock can only influence house-

holds’ actions through its effect on prices.

Using equation (31), it is straightforward to demonstrate the following.

Proposition 5. For σ2
s sufficiently small, equilibria a−, a◦ exhibit comovement of aggregate

output, employment, the price level, and the price of capital in response to surprise productivity

shocks. For σ2
s sufficiently small, also a+, au do provided κ < α.

Proof. The results follows from continuity of the best-response function, and the observation

that

lim
σs→0

ϕ(â) =
1

1− αφ
> 1 (32)

for â ∈ {a−, a◦}, and

lim
σs→0

ϕ(â) =
1− κ
1− α

> 1 (33)

for â ∈ {a+, au} provided κ < α.
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Crucially, the relation in (31) implies that aggregate demand is upward sloping for any

ϕ(a) larger than unity. In this case, price and quantity will move together in response to

shifts of either aggregate demand or aggregate supply! Moreover, as the relative variance σs

decreases, this will be true for all equilibria in the economy provided that κ < α. Even the

unique and high equilibria, which display no fluctuations in response to surprise shocks in

the limit σn → 0, exhibit (conditional) comovements in prices and quantities away from that

limit, as if the economy were hit by a common demand shock.

To assess the likely implications of learning from prices for aggregate comovements in

practice, we perform a very simple calibration exercise. In particular, we fix the the degree of

decreasing returns α = 0.9, and the select the parameter φ so that the stead-state labor share

of total income is 60%. We then consider two values for the share of informed households,

κh = 0.80 and κl = 0.20 respectively. These parameters correspond to values for the reduced-

form parameter γ = 0.57 and γ = 0.08 respectively, implying a unique equilibrium in the first

case and (potentially) multiple equilibria in the second.

Figure 3 plots aggregate supply and demand relations for different values of the relative

volatility, σs, in the two cases; when the economy exhibits multiplicity, we consider the low

equilibrium. In both cases, as σs shrinks, the slope of aggregate demand turns clockwise until

it becomes upward sloping. In particular, the upward slope in aggregate demand exceeds the

slope of aggregate supply as shown by the two panels in the last column. In both equilibria,

when the variance of productivity shocks is sufficiently small, outward shifts in supply move

prices and quantities in the same direction.

Therefore, aggregate demand in the low equilibrium behaves in a manner that qualitatively

resembles its behavior in the unique equilibrium. The peculiarity of the low equilibrium is

that, in the limit of σs approaching zero, supply and demand overlie each other. The last

panel of Figure 3 therefore provides an easy intuition for the extremely large informational

multiplier implied by our sentiment-like equilibria, as even small shifts in aggregate supply

imply large changes in the equilibrium quantity of consumption.
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AS

(a) Unique Equilibrium (κ = 0.80)

(b) Low Equilibrium (κ = 0.20)

Figure 3: Aggregate supply and demand in the microfounded model.
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Fact 2: Contractionary technology

One robust — and from the perspective of an RBC model, surprising — fact about business

cycles is that hours typically fall on impact in response to improvements in aggregate tech-

nology, while aggregate productivity is only weakly associated with output at any horizon.12

Basu et al. (2006) document the first fact in detail, and shows that it can be rationalized in

the context of a sticky price model. Our model offers an alternative account.

To see that hours can fall in response to technology improvements, recall that aggregate

labor supply is equal to the average expectation in the economy. By equation (21), we have

n = (1− κ)

∫
E[µi|pi]di = −(1− κ)

a(1− γ)

1− a(1− γ)
ζs. (34)

Thus, unanticipated positive technology shocks lead to a decrease in hours whenever a < (1−

γ)−1, which is always true of the low and unique equilibria.13 The intuition is straightforward:

an increase in the price seen by a household could be caused by improving local conditions

or by falling aggregate productivity and agents become overly optimistic precisely when (the

unobserved part of) productivity is falling. In contrast, forecasted productivity shocks have

no effect on labor in our economy, implying that the correlation between hours and total

productivity is always both negative and imperfect.

While the correlation of hours with productivity is unambiguous in the model, the output-

productivity relationship is slightly more subtle. Once again, it turns out that this relationship

hinges on the strength of the learning from prices channel. In particular, higher productivity

causes output contractions in the unique and low equilibria whenever information effects

are sufficiently strong, that is whenever, on average, the surprise component relative to the

anticipated one is small enough (i.e. σs is small enough) that aggregate demand slopes upward

as depicted in Figure 3. The weak contemporaneous relationship between (total) productivity

and output is also consistent with the findings of Basu et al. (2006), who show a small impact

response of output to identified TFP shocks.

12The disconnect between productivity and endogenous variables has been emphasized by several authors,
including Angeletos et al. (2014), Angeletos et al. (2016), Chahrour and Ulbricht (2017), and Chahrour and
Jurado (2017b).

13Conversely, it never holds for the high and middle equilibria.
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Facts 3 and 4: Weakening price-quantity correlation

While Proposition 5 shows that surprise shocks induce positive comovement among business

cycle variables, the opposite is true in the case of shocks to productivity that are forecasted.

Since forecasted productivity shocks affect both supply and demand, it is helpful to solve

for equilibrium consumption and price as a function of shocks and the equilibrium inference

coefficient:

p = −α(1− φ)(1− κ)ζ + (1− αφ)ψ(1− κ)ζs (35)

c = α(1− φ)(1− κ)ζ + αφψ(1− κ)ζs, (36)

where ψ ≡ α(1−φ)
ϕ(a)−1−1+αφ . From equation (36) it is immediate that forecasted technology shocks

always expand output, while equation (34) implies zero impact on labor supply. Moreover,

comparing (35) and (36), it is clear that the news component, ζn, will move prices and

quantities in opposite directions, generating the comovement more typically associated with

a supply shock. Thus, overall comovements — the degree to which labor and prices are

procyclical, as well as the correlation of total factor productivity with all endogenous variables

— will depend on the balance of forecastable and surprise productivity, as well as the overall

size of these shocks relative to local conditions.

Such different transmission of productivity components allows our model to escape a com-

mon criticism to the literature on news and noise that productivity is only weakly correlated

with business cycle variables at all horizons (see for example Angeletos et al. (2014)). Our

model is consistent with this observation because the unanticipated and surprise components

of productivity are transmitted very differently, leading to weak correlation between total

productivity and other variables. Notice that this is the case even if productivity has small

surprise components. In fact, it is exactly when current productivity is largely anticipated

that our mechanism becomes more important.

Business cycles: All facts together in the unique equilibrium

Putting together the observations above, it is plain that our model can qualitatively match

our set of business cycle facts one at a time, but can it match them simultaneously? It
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Figure 4: Correlations in the economy with both anticipated and unanticipated technology,
with κ = 0.80 and σ = 0.10.

turns out the answer is “yes”. The key degree of freedom, and the only one we exploit here,

is the decomposition of productivity into its news and surprise components. Because the

economy responds differently to these components, we can combine the demand-like effects

of surprise productivity shocks with the supply effects of forecasted productivity shocks,

delivering comovements between minus one and one.

Figure 4 plots the correlations of output, prices, hours, and productivity as function of

the ratio σn/σs in the unique equilibrium economy, fixing κ = 0.80 and σ2
s +σ2

n = 0.12. When

only a small fraction of productivity is forecastable, comovements are driven by the strong

information effects inherent in surprise shocks, leading to strongly positive price-quantity

comovements, perfectly contractionary productivity shocks, and a price level that is very

strongly negatively correlated with TFP. Conversely, in the extreme of perfectly forecasted

productivity, the economy appears to be driven by pure supply shocks, with perfect negative

correlation of output and prices. In the intermediate range of this ratio, however, these forces

offset each other, leading to correlations that qualitatively match all of the implications in

Table 1: hours are strongly procyclical, prices are procyclical but less strongly, hours are

negatively correlated with productivity while output is only weakly correlated with it, and

prices are imperfectly negatively correlated with productivity. While simple, the model does
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Figure 5: Aggregate volatility with κ = 0.80 and σ = 0.10.

a remarkable job matching the stylized facts with which we began.

Finally, Figure 5 plots the overall degree of amplification in the unique equilibrium econ-

omy as a function of the fraction of shocks that are forecasted. As suggested by equation (36),

the overall size of the response to surprise shocks is substantially larger than to forecasted

productivity shocks, such that in the extreme of perfectly unforecastable technology, output

is roughly ten times as volatile as it is under full information. Prices are also amplified, and

are up to about five times as volatile as they are under full information. In the intermediate

range that best matches the various business cycle moments in Table 1, the figure shows

overall output volatility that is roughly three times that implied by the model under full

information. In short, even when the economy has a unique equilibrium, the model delivers

substantial amplification of aggregate productivity shocks.

5 Extensions and Robustness

This section presents several extensions to the basic setup, showing that the insights of the

main mechanism are robust to various modeling details. In Section 5.1, we allow households

to observe additional private information about local conditions and show that our results do

not rely on excluding exogenous sources of information. To emphasize that wage rigidity is

not essential for our story, Section 5.2 considers a version of the model without wage rigidity

and show that it has similar implications. Section 5.3 allows for the disaggregation of goods at

the island level to demonstrate that the existence of upward-sloping aggregate demand in our
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model does not require the existence of upward-sloping demand at the good level. Finally, to

address concerns about the plausibility of learning from prices equilibria, Section 5.4 studies

the issue of stability under adaptive learning for the various equilibria of the baseline model.

5.1 Signal extraction problem with private signals

Here we show that the signal extraction problem, and corresponding equilibria, are not qual-

itatively affected by the availability of a private signal about the local shock. Instead, the

addition of private information maps into our analysis of Section 3 as an increase in the

relative variance of aggregate shocks.

Let us assume that a household j ∈ (0, 1) in island i has a private signal

ωij = µi + ηij (37)

where ηij ∼ N(0, ση) is identically and independently distributed across households and

islands. In this case, households form expectations according to

E[µi|si, ωij] = a

(
γεi + (1− γ)

(∫
E[µi|si, ωij]di− ζ

))
+ b
(
µi + ηij

)
,

where b measures the weight given to the additional private signal. Averaging out the relation

above and solving for the aggregate expectation gives∫
E[µi|pi, ωij]di = − a (1− γ)

1− a (1− γ)
ζ,

which is identical to (21). However, now we need two optimality restrictions to determine a

and b. These are

E[pi(µi − E[µi|pi, ωij])] = 0 ⇒ γσµ − a

(
γ2σµ +

(1− γ)2

(1− a (1− γ))2
σζ

)
− bγσµ = 0,

E[ωij(µi − E[µi|pi, ωij])] = 0 ⇒ σµ − aγσε − b (σµ + ση) = 0,

which identify the equilibrium a and b such that each piece of information is orthogonal with

the forecast error. Solving the system for a, we get a fix point equation written as

a =
γ

γ2 + (1−γ)2

(1−a(1−γ))2
σµ+ση
ση

σζ
σµ

. (38)
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For ση →∞, the right-hand side of the relation above matches (25). In particular, it follows

that a lower ση in (38) is equivalent to considering a larger σζ in (25). The analysis of the

baseline model thus applies directly to this generalization, and small amounts of exogenous

private information do not qualitatively change any of our earlier results.

5.2 Model without wage rigidity

Wage rigidity provides an easy microfoundation for our key equations. Here we provide an

alternative with flexible wages to demonstrate our results do not require this particular model

specification.

The utility function of the household is modified as follows:

βt

(
logCij,t −

N1+δ
ij,t

1 + δ
+ χe−µi−σ

2
µ/2Mij,t

)
,

subject to the same budget constraint (2). The problem of the representative firm on island

i also remains the same.

As in Lucas (1980), we assume now that an household is constituted by two family mem-

bers, a household and a worker. Although both share the same payoff, they cannot commu-

nicate among each other and they act independently (to bear in mind: although they share

pay-offs the equilibrium concept that we use remains Nash). The timing is as follows: In the

first stage, the shocks realize. In a second stage, all workers receive information about the

local shock whereas only a fraction κ ∈ (0, 1) of consumers receive it. In the third stage,

makes consumption or labor choices conditional on the information received and the market

prices observed.

Therefore, we have now a labor supply equation. Workers provide work according to:

N δ
ij,0 = Λij,0Wi,0.

Since ( 9) and (10) still hold, we can rewrite the optimal labor supply in terms of log-linear

deviations from the stochastic steady state as δnij,0 = −µi + wi,0. Aggregating across agents

j we get that

δni,0 = −µi + wi,0.
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In appendix A3 we show that this version of the model yields with minor changes the same

setting that we analyse here.

In this version of the model one has to prevent consumer’s learning from the labor market

splitting the household in different information types. In fact, if the consumer could observe

the wage, then she would be able to infer the local shock as she observe two signal to infer

two shocks. One could then complicate the model allowing for two local shocks, making the

observation of two signals no longer sufficient to perfectly infer three shocks. However, it turns

out that in order to have real effects - by only relying on our learning friction - expectations in

the first-order-conditions for labor and consumption must be taken with different information

sets. This is the essential ingredient that our assumption of wage rigidity is buying, which

however can be obtained by other information assumptions.

5.3 Upward-sloping demand?

One possible objection to the realism of our mechanism is the implication that the consump-

tion of island-specific good Ci is rising in its price, i.e., that local consumption goods appear

to be Giffen goods. Such behavior at the good level is not an essential aspect of our story.

The most natural way to avoid this complication is to presume that, within islands, quantity-

choosing firms produce a continuum of goods indexed by (i, k), which are then aggregated at

the island-level by a standard Dixit-Stiglitz aggregator, Ci =
(∫

C
1− 1

θ
ik

) 1

1− 1
θ dk with θ > 1.

Suppose now that each (i, k) producer is hit with an idiosyncratic, mean-zero productivity

shock, υik. In this case, the price of good cik in logs turns out to be

pik = (1− α)µei + α(1− φ)(q − ζ̃ − υik).

Demand for good cik is governed by the standard formula

cik = −θ(pik − pi) + ci,

which reflects a substitution effect governed by the standard elasticity parameter at the good

level: An econometrician studying good-level prices would find no evidence that the typical
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good is Giffen. Nevertheless, the total price level on island i,

pi =

∫
pikdk = (1− α)µei + α(1− φ)(q − ζ̃),

is both (i) identical to its value in the baseline economy, and (ii) reflects the optimal (even)

weighting of the signals pik that households use in equilibrium to infer their local shock:

Subsequent analysis of the island-level and aggregate economy is not affected.

5.4 Stability analysis

Here, we examine the issue of out-of-equilibrium convergence, that is, whether or not an

equilibrium is a rest point of a process of revision of beliefs in a repeated version of the static

economy. We suppose that agents behave like econometricians. At time t they set a weight ai,t

that is estimated from the sample distribution of observables collected from past repetitions

of the economy.

Agents learn about the optimal weight according to an optimal adaptive learning scheme:

ai,t = ai,t−1 + γt S
−1
i,t−1 pi,t

(
µi,t − ai,t−1pi,t

)
(39)

Si,t = Si,t−1 + γt+1

(
p2i,t − Si,t−1

)
, (40)

where γt is a decreasing gain with
∑
γt =∞ and

∑
γ2t = 0, and matrix Si,t is the estimated

variance of the signal. A rational expectations equilibrium â is a locally learnable equilibrium

if and only if there exists a neighborhood z (â) of â such that, given an initial estimate

ai,0 ∈ z (â), then limt→∞ ai,t
a.s
= â; it is a globally learnable equilibrium if convergence happens

for any ai,0 ∈ R.

The asymptotic behavior of statistical learning algorithms can be analyzed by stochastic

approximation techniques (for details, refer to Marcet and Sargent, 1989a,b and Evans and

Honkapohja, 2001). Below we show that the relevant condition for stability is a′i (a) < 1,

which can easily checked by inspection of Figure 1.

It turns out that the unique equilibrium is globally learnable, that is, no matter the initial

estimate, revisions will lead agents to coordinate on the equilibrium. In case of multiplicity,

the high and low equilibrium are locally learnable, whereas the middle equilibrium is not.
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Hence the middle equilibrium works as a frontier between the basins of attraction of the two

equilibria.

To check local learnability of the rational expectations equilibrium, suppose we are already

close to the resting point of the system. That is, consider the case
∫

limt→∞ ai,t di = â, where

â is one of the equilibrium points {a−, a◦, a+}, and so

lim
t→∞

Si,t = σ2
s (â) = γ2σ2

µ +
(1− γ)2

(1− â (1− γ))2
σ2
ζ . (41)

According to stochastic approximation theory, we can write the associated ODE governing

the stability around the equilibria as

da

dt
=

∫
lim
t→∞

E
[
S−1i,t−1pi,t

(
µi,t − ai,t−1pi,t

)]
di

= σ2
s (â)−1

∫
E
[
pi,t
(
µi,t − ai,t−1pi,t

)]
di

= σ2
s (â)−1

(
γσ2

µ − ai,t−1

(
γ2σ2

µ +
(1− γ)2

(1− at−1 (1− γ))2
σ2
ζ

))
= ai (a)− a. (42)

For asymptotic local stability to hold, the Jacobian of the differential equation in (42) must

be less than zero at the conjectured equilibrium. The derivative of ai(a) with respect to a is

given by:

a′i(a) = − 2γ (1− γ)3 (1− (1− γ) a)σ2(
(1− γ)2 σ2 + (1− (1− γ)a)2 γ2

)2 , (43)

which is positive whenever a > (1 − γ)−1. Then, necessarily, a′i(a◦) > 1, a′i(a+) ∈ (0, 1),

a′i(a−) < 0 and a′i(au) < 0. This proves that the low and unique equilibrium are respectively

locally and globally learnable.

6 Conclusion

Learning from prices has played an important role in our understanding of financial markets

since at least Grossman and Stiglitz (1980). Yet, learning from prices appeared even earlier

in the macroeconomics literature, including in the seminal paper of Lucas (1972). Never-

theless, that channel gradually disappeared from models of the business cycle, in large part
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because people concluded that fundamental shocks would be almost completely revealed be-

fore incomplete knowledge about them could influence relatively slow-moving macroeconomic

aggregates.

In this paper we have shown that, even if aggregate shocks are nearly common knowledge,

learning from prices may still play a crucial role driving fluctuations in beliefs. In fact, the feed-

back mechanism we described is strongest precisely when the aggregate shock is almost, but

not-quite-fully, revealed. Endogenous information structures can deliver strong multipliers on

small common disturbances, and thus offer a foundation for coordinated, expectations-driven

economic fluctuations. Such fluctuations are completely consistent with rational expectations.

Moreover, the key feature of our theory is also a feature of reality: agents observe and draw

inference from prices that are, themselves, influenced by aggregate conditions.

Applied to an economy driven only by productivity shocks, we have shown that this

mechanism captures several salient features of business cycles, including weak-but-positive

price quantity correlation and the contractionary labor effects of positive productivity shocks.

Our approach is consistent both with the evidence that productivity and endogenous outcomes

are weakly correlated and with the prior of many macroeconomists that productivity plays a

central role in explaining business cycles. Our results suggest that the relationship between

supply and demand shocks is more subtle than typically assumed in the empirical literature,

and future work may wish to take in account the implications of price-based learning.

Appendix

A1 Derivations

Log-linear equilibrium. The system of aggregate log-linear relations is written as
c
q
n
p

 =


0 0 0 −1
0 0 αφ 1
1
αφ

0 0 0

0 0 1− αφ 0



c
q
n
p

+


1 0
0 α (1− φ)

0 −α(1−φ)
αφ

0 −α (1− φ)

[µ̄ζ̃
]
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whose solution is 
c
q
n
p

 =


αφ α (1− φ)
1 0
1 0

1− αφ −α (1− φ)

[µ̄ζ̃
]
.

On island i we have
ci
zi
ni
pi

 =


0 0 0 −1

0 0 αφ
1−α(1−φ)

1
1−α(1−φ)

1
αφ

−α(1−φ)
αφ

0 0

0 −α (1− φ) 1− αφ 0



ci
zi
ni
pi

+


1 0 0

0 α(1−φ)
1−α(1−φ) − 1

1−α(1−φ)

0 −α(1−φ)
αφ

0

0 −α (1− φ) 0


µeiζ̃
q


whose solution is 

ci
zi
ni
pi

 =


α α (1− φ) −α (1− φ)
1 0 −1
1 0 0

1− α −α (1− φ) α (1− φ)


µeiζ̃
q

 .
Finally, consider first the following identity at the household level

Mij,0 + Pi,0 (Cij,0 − Ci,0) = Qt (Z − Zi,0) +M

obtained by adding and subtracting PiCi to the right-hand side of (2) and noting PiCi =
QtZi,t +Wi,tNi,t + Πi according to (3). In particular, note that here we have assumed Nij,t =
Ni,t, which has no effect on island-level aggregates. At the level of each island then an increase
(resp. a decrease) in the stock of the saving asset obtains when the island employ less (resp.
more) capital then it is endowed with according to∫

Mij,0dj = Qt (Z − Zi,0) +M ,

whereas differences in savings at the individual level comes from differences in consumption
according to

Mij,0 + Pi,0 (Cij,0 − Ci,0) =

∫
Mij,0dj

after using the previous relation.

Derivation of the price signal. The market price can be rewritten as

pi = (1− α)
(
κµi + (1− κ)E[µi|pi]

)
+ α(1− φ)

(
(1− κ)

∫
E[µi|pi]di− ζ̃

)
.

Given that the expectation Ei[µi|pi] is common knowledge among households on island-i, the

35



market price is informationally equivalent to

si ≡
1

(1− α)κ+ α(1− φ)(1− κ)
(pi − (1− α)(1− κ)E[µi|pi]) =

=
1− κ

(1− α)κ+ α(1− φ)(1− κ)

(
(1− α)

κ

1− κ
µi + α(1− φ)

(∫
E[µi|pi]di−

ζ̃

1− κ

))

which removes the common knowledge term and rescales so that signal weights sum to one.
Defining

γ ≡ (1− α)κ

(1− α)κ+ α(1− φ)(1− κ)
∈ (0, 1)

we can rewrite the signal received by uninformed households on island i as

si = γµi + (1− γ)

(∫
E[µi|si]di− ζ

)
.

where obviously E[µi|pi] = E[µi|si] and ζ ≡ ζ̃/(1−κ) is distributed according to N(0, σ2
ζ) and

σ2
ζ ≡ σ2

ζ̃
/(1−κ)2. The signal structure implied by this final equation captures the endogenous

feedback effect of inference from prices back into prices, and it is on this structure that we
focus our analysis in the text.

A2 Proofs of Propositions

Proof of Proposition 1. To prove uniqueness for γ ≥ 1/2, observe that the function ai(a) is
continuous, bounded above by γ−1, and monotonically decreasing in the range (−∞, (1− γ)−1).
From γ ≥ 1/2, we have (1 − γ)−1 > γ−1. Thus ai(a) intersects the 45-degree line a single
time.

To prove the existence of a−, notice that lima→−∞ ai = γ−1 and ai((1− γ)−1) = 0. By
continuity, an equilibrium a− ∈ (0, (1− γ)−1) must always exist. Moreover a− must be
monotonically decreasing in σ2 as ai is monotonically decreasing in σ2.

We now assess the conditions under which additional equilibria may also exist. Because
lima→∞ ai = γ−1 , the existence of a second equilibrium (crossing the 45-degree line in Figure
1) implies the existence of a third. Thus, we must determine whether the difference ai(a)−a
is positive anywhere in the range a > (1− γ)−1. Such a difference is positive if and only if

Φ (σ) ≡ γ (1− a (1− γ))2 (1− γa)− a (1− γ)2 σ2 > 0, (A1)

which requires a < γ−1 as a necessary condition. Therefore, if two other equilibria exist they
must lie in ((1− γ)−1 , γ−1). Fixing a ∈ ((1− γ)−1 , γ−1), limσ→0 Φ (σ) is positive, implying
that there always exists a threshold σ̄ such that two equilibria a+, a◦ ∈ ((1− γ)−1 , γ−1) exist
with a+ ≥ a◦ for σ2 ∈ (0, σ̄2).

Proof of Proposition 2. Notice that ∂Γ/∂a > 0 if and only if γ < min{(1 − γ)−1, γ−1}. The
left-hand side of the fixed-point expression in (25) is downward-sloping in a and falling in σ,
implying that the fixed-point intersection au and a− must increase as σ falls. Similarly, a◦
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falls and a+ grows as σ falls, which implies amplifying feedback for the former and dampening
feedback for the latter.

Proof of Proposition 3. To prove the limiting statement for γ ≥ 1/2, consider any point
aδ = 1−δ

1−γ such that δ > 0. We then have

ai(aδ) =
γδ2

γ2δ2 + σ2(1− γ)2.
(A2)

Since limσ2→0 ai(aδ) = 1
γ

for any δ, the unique equilibrium must converge to the same point.

That the variance of this equilibrium approaches zero follows from equation (21).
To prove the limiting statement for γ < 1/2, recall the monotonicity of ai(a) on the

range (0, (1 − γ)−1). Following the logic of Proposition 1, for any point aδ in that range,
limσ2→0 ai(aδ) = γ−1, while ai((1 − γ)−1) = 0. Thus, the intersection defining a− must
approach (1 − γ)−1. An analogous argument for the point just to the right of (1 − γ)−1

establishes that a− converges to the same value. Finally, the bounded monotonic behavior of
ai(a) establishes that limσ2→0 a+ = γ−1 for the high equilibrium.

That the output variance of the high equilibrium in the limit σ → 0 is zero follows from
equation (22). The limiting variance of the two other limit equilibria can be established by
noticing that (25) implies

σ2

(1− a(1− γ))2
=
γ(1− aγ)

(1− γ)
(A3)

which, substituted into (22), gives (27) for a→ (1− γ)−1.

Proof of Proposition 4. Suppose not, i.e. suppose that∫
E[µi|si]di = φζζ + φεε,

where φε is the equilibrium effect of an extrinsic sentiment shock, ε, not related to fundamen-
tals. Then, the price signal is equivalent to

si = γµi + (1− γ)
(
(φζ + 1)ζ + φεε

)
Using the conjectured weights ai, we have∫

aisidi = a(1− γ)(φζ + 1)ζ + a(1− γ)φεε

implying that

φζ = a(1− γ)(φζ + 1)

φε = a(1− γ)φε

which cannot both be true unless φε = 0. Notice that, differently from the case with multiple
sources of signals studied by Benhabib et al. (2015) (section 2.8 page 565), in our case an
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aggregate shock (our productivity shock) shows up directly in the signal, which ensures de-
terminacy of the average expectation. This is equivalent to say that the analysis in Benhabib
et al. (2015) is not robust to the introduction of correlation (no matter how small) in the vjt
shocks appearing in their endogenous signals.

A3 Extensions

Correlation in island-specific shocks

We now consider a version of the model in which local shocks are correlated—that is µi =
µ + εi where µ ∼ N

(
0, σ2

µ

)
—and there are no productivity shocks. Notice that previously,

productivity shocks acted as noise in the signal, since households were only interested in
the forecast of µi. Now, the aggregate term µ represents a common objective in the signal
extraction problem of households.

Following the derivation of (17), the signal derived from the observed price is

si = γ(µ+ εi) + (1− γ)

∫
E[µ+ εi|si]di, (A4)

which no longer embeds a productivity shock. Nonetheless, correlated fundamentals generate
confusion between the idiosyncratic and common components of the signal. As before, the
individual expectation of a household of type i is formed according to the linear rule E[µ +
εi|si] = aisi. Hence, the signal embeds the average expectation, which again causes the
precision of the signal to depend on the average weight a. Following the analysis of the earlier
section, the realization of the price signal can be rewritten as

si = γεi +
γ

1− a(1− γ)
µ, (A5)

where a represents the average weight placed on the signal by other households. The variance
of the average expectation is given by

σ2
E(a) =

(
γa

1− a(1− γ)

)2

σ2, (A6)

which is slightly different from (22). The household’s best response function is now given by

ai(a) =
1

γ

(
(1− a(1− γ))2 + (1− a(1− γ))σ2

(1− a(1− γ))2 + σ2

)
. (A7)

While the best-response function in equation (A7) is slightly different than that of equation
(25) for the case with productivity shocks, we can prove that the characterization of the limit
equilibria is identical.

Proposition 6. In the limit σ2
µ → 0, the equilibria of the economy converge to the same
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points as the baseline economy:

lim
σ2
µ→0

aµe = lim
σ2→0

ae lim
σ2
µ→0

σ2(aµe ) = lim
σ2→0

σ2(ae) for e ∈ {u,−, ◦,+} (A8)

Proof. We can prove that a sentiment-free equilibrium with no aggregate variance exists for
a = γ−1 by simple substitution in (A7). The limiting variance of the other limit equilibrium
at the singularity a→ (1− γ)−1 can be established by noticing that (A7) implies that

σ2

(1− a(1− γ))2
=

1− aγ
aγ

+
1− a(1− γ)

aγ

σ2

(1− a(1− γ))2
,

which gives

σ2

(1− a(1− γ))2
= −1− aγ

1− a
.

Substituted into (A6), this gives (27) for a→ (1− γ)−1.

More generally, it is possible to show that Propositions 1 through 3 follow identically, and
their proofs proceed in parallel with only the obvious algebraic substitutions.

Flexible wages

The system of aggregate log-linear relations consist of 5 equations in 5 variables. This is
written as 

c
q
n
p
w

 =


0 0 0 −1 0
0 0 αφ 1 0
1
αφ

0 0 0 0

0 0 1− αφ 0 1
0 0 δ 0 0



c
q
n
p
w

+


1 0
0 α (1− φ)

0 −α(1−φ)
αφ

0 −α (1− φ)
0 0


[
µ̄

ζ̃

]

whose solution is 
c
q
n
p
w

 =


α φ

1+δ
α (1− φ)

1 0
1

1+δ
0

1
1+δ

(δ + 1− αφ) −α (1− φ)
δ
δ+1

0


[
µ̄

ζ̃

]
.

On island i we have
ci
zi
ni
pi
wi

 =


0 0 0 −1 0

0 0 αφ
1−α(1−φ)

1
1−α(1−φ) 0

1
αφ

−α(1−φ)
αφ

0 0 0

0 −α (1− φ) 1− αφ 0 1
0 0 δ 0 0



ci
zi
ni
pi
wi

+


0 1 0 0

0 0 α(1−φ)
1−α(1−φ) − 1

1−α(1−φ)

0 0 −α(1−φ)
αφ

0

0 0 −α (1− φ) 0
1 0 0 0



µi
µei
ζ̃
q


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whose solution is
ci
zi
ni
pi
wi

 =


−α φ

δ+1
α

1+δ
(1 + δ (1− φ)) α (1− φ) −α (1− φ)

0 1 0 −1
− 1

1+δ
1

1+δ
0 0

α φ
1+δ

1
1+δ

(1− α + δ (1− α (1− φ))) −α (1− φ) α (1− φ)
1

1+δ
δ

1+δ
0 0



µi
µei
ζ̃
q

 .

Individual savings are calculated as before.

Derivation of the price signal. The market price can be now rewritten as

pi =
αφ

1 + δ︸ ︷︷ ︸
A1

µi+
1− α + δ(1− α + αφ)

1 + δ︸ ︷︷ ︸
A2

(
κµi+(1−κ)E[µi|pi]

)
+α(1− φ)︸ ︷︷ ︸

A3

(
(1− κ)

∫
E[µi|pi]di− ζ̃

)
.

Given that the expectation Ei[µi|pi] is common knowledge among households on island-i, the
market price is informationally equivalent to

si ≡
1

A1 + A2κ+ A3(1− κ)
(pi − A2(1− κ)E[µi|pi]) =

=
1

A1 + A2κ+ A3(1− κ)

(
(A1 + A2κ)µi + A3(1− κ)

(∫
E[µi|pi]di−

ζ̃

1− κ

))

which removes the common knowledge term and rescales so that signal weights sum to one.
Defining

γ ≡ A1 + A2κ

A1 + A2κ+ A3(1− κ)
∈ (0, 1)

we can rewrite the signal received by uninformed households on island i,

si = γµi + (1− γ)

(∫
E[µi|si]di− ζ

)
,

as in the text. Then our analysis of the signal extraction problem stays unaffected and our
business cycle analysis remains qualitatively the same (only the mapping from γ to parameters
changes).
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